
www.manaraa.com

www.manaraa.com

DUDLEY O R-Y

BA\
MHOOL

MONTBR] 3002

www.manaraa.com

www.manaraa.com

www.manaraa.com

NPS52-87-023

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A COMPUTER SIMULATION STUDY OF TRIPOD
FOLLOW-THE-LEADER GAIT COORDINATION

FOR A HEXAPOD WALKING MACHINE

Relle Lewis Lyman, Jr.

June 1987

Thesis Advisor: R. B. McGhee

Approved for public release; distribution is unlimited

Prepared for:

Ohio State University Research Foundation
Columbus, OH 43212

T23>^

www.manaraa.com

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin D. A. Schrady

Superintendent Provost

This thesis prepared in conjunction with research sponsored in part by Ohio State

Univ. Research Foundation under RF Project No. 716520.

Reproduction of all or part of this report is authorized.

www.manaraa.com

SECuR'Ty Classification Of Tmi? paG?

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
ib RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2 to OEClASSiFiCATiON - DOWNGRADING SCHEDULE

3 DISTRIBUTION/ AVAILABILITY Of REPORT

Approved for public release; distribution
is unlimited

4 PERFORMING ORGANISATION REPORT NUMBER(S)

NPS52-87-023

S MONITORING ORGANIZATION REPORT NUM8ER(S)

6d NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If tpplmble)

52

7a NAME OF MONlTORiNG ORGANIZATION
Prof. Kenneth J. Waldron
Dept. of Mech. Eng . , Ohio State Univ

6< ADDRESS vOry Stitt, *nd ZIP Cod*)

Monterey, California 93943-5000

7b ADDRESS (Ofy. Sr*re »nd ZIP Code)

2075 Robinson Laboratory
206 W. 18th Ave.
Columbus, Ohio 43210

8a NAME OF FUNDING / SPONSORING
ORGANIZATION

Ohio State Univ. Research Founlation

8b OFFICE SYMBOL
(if tpphabie)

9 PROCUREMENT INSTRUMENT IDE N HF iCA HON NUMBER

RF Project No. 716520
RF Purchase Order No. 496549

8c AD0RESS(Ory Sfjfe and ZiPCode)

1314 Kinnear Road

Columbus, OH 43212

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK JNIT
ACCESSION NO

ii T
;
r ^ £ (include Security CUiiifnttion)

A COMPUTER SIMULATION STUDY OF TRIPOD FOLLOW-THE-LEADER GAIT COORDINATION FOR A HEXAPOD
WALKING MACHINE

12 PERSONAL AuThOR(S)

Lyman, Relle L,

• 3j type of REPORT

MS and EE Thesis
' 30 T-ME COVERED
FROM TO

4 OATE Of REPORT (Ye*r Month Day)

1987 June
IS PAGE COi^NT

177

6 Supplementary notation

COSATi COOES

ElD GROup

_L

subgroup

18 SUBJECT TERMS (Continue on reverie if neceiS*ry tnd idenhfy by block number)

Robotics, Walking Machines, Adaptive Suspension
Vehicle

9 ABSTRACT (Continue on reverie it necemry and identify by bloxk number)

A new type of gait and steering algorithm for use by a six-legged walking machine is

developed and presented in this study. The spatially oriented tripod follow-the-leader
gait is an extension of previous studies of temporal follow-the-leader gaits, and
should prove useful for all-terrain walking vehicles, such as the Adaptive Suspension
Vehicle. Tractor-trailer style steering is introduced as an effort to tailor steering

control for this type of gait. Both gait and steering algorithms are implemented on a

color graphics compjjter simulation for study and comparison with other walking algorithms

!0 D S'R'3UTiON / AVAILABILITY OF ABSTRACT

Qv-'NCLASSiHEQ/UNl'MiTeD Q SAME AS FtPT D DTiC USERS

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a NAME Of RESPONSIBLE INDIVIDUAL

Robert B. McGhee
22b telephone (include Are*Code)

408-646-2095
22c OfUCE SYMBOL

52Mz

DO FORM 1473, 84 mar 83 APR edition mty be used until e«nausted

All other editions *re obsolete

1

SECURITY CLASSIFICATION OF T HiS PACE

www.manaraa.com

Approved for public release, distribution is unlimited

A Computer Simulation Study of Tripod

Follow— the—Leader Gait Coordination

for a Hexapod Walking Machine

by

Relle Lewis Lyman. Jr.

Lieutenant, United States Navy

B.S.. United States Naval Academy. 1980

Submitted in partial fulfillment of the

requirements for the degree(s) of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and

ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL

June 1987

www.manaraa.com

ABSTRACT

A new type of gait and steering algorithm for use by a six-legged walking

machine is developed and presented in this study. The spatially oriented tripod

follow-the-leader gait is an extension of previous studies of temporal follow-the-

leader gaits, and should prove useful for all-terrain walking vehicles, such as the

Adaptive Suspension Vehicle. Tractor-trailer style steering is introduced as an

effort to tailor steering control for this type of gait. Both gait and steering

algorithms are implemented on a color graphics computer simulation for ^tudy

and comparison with other walking algorithms.

www.manaraa.com

'3f

TABLE OF CONTENTS

I. INTRODUCTION 7

A. GOALS 8

B. ORGANIZATION 9

II. SURVEY OF PREVIOUS WORK 11

A. INTRODUCTION 11

B. GAIT SELECTION 14

1. Definitions 14

2. Follow-the-Leader Gaits 15

3. Singular Tripod Gaits 19

C. STEERING 21

D. STABILITY 24

E. GRAPHICS 25

F. SUMMARY 27

III. DETAILED PROBLEM STATEMENT 28

A. INTRODUCTION 28

B. ASV CONFIGURATION 28

C. SELECTED WALKING ALGORITHMS 32

www.manaraa.com

1. Gaits 32

2. Steering 33

3. Foothold Selection 36

D. MODELING SIMPLIFICATIONS 38

E. MODEL KINEMATICS 39

1. Coordinate Systems 40

2. Body Regulation 43

3. Rate Computation 45

4. Leg Kinematics 48

F. SIMULATION FACILITIES 50

1

.

H ardware 50

2. Software 51

G. SUMMARY 51

IV. SIMULATION PROGRAM 52

A. INTRODUCTION 52

B. USER'S GUIDE 52

1. Starting Up 52

2.~Menu 54

3. Forward Wave Gait 54

4. Follow-the-Leader Gait 56

www.manaraa.com

5. Status and Warnings 58

6. Reset and Exit 61

C. GRAPHICS ON THE IRIS-2400 61

D. PROGRAM ORGANIZATION 62

E. SUMMARY 78

V. SIMULATION PERFORMANCE 79

A. MODELING FIDELITY 79

B. FORWARD WAVE TRIPOD GAIT 80

C. FOLLOW-THE-LEADER TRIPOD GAIT 80

VI. SUMMARY AND CONCLUSIONS 83

A. RESEARCH CONTRIBUTIONS 84

B. RESEARCH EXTENSIONS 86

LIST OF REFERENCES 89

APPENDIX: PROGRAM LISTING 92

INITIAL DISTRIBUTION LIST 174

6

www.manaraa.com

I. INTRODUCTION

It is estimated that nearly half of the Earth's land surface is inaccessible to

wheeled and tracked vehicles [Ref. l]. Yet almost all of this same area can be

successfully traversed by animals and man. This great difference in mobility has

motivated research into the creation of a practical legged vehicle or

walking machine .

The advantages of legged locomotion can largely be attributed to the

flexibility offered in leg placement and support. Wheeled vehicles, and to a lesser

extent tracked vehicles, are confined to a more or less continuous, relatively flat

and obstruction free paths along the ground. The leg's flexibility allows the

utilization of discontinuous support regions on the ground and the adaptation to

terrain slope. A legged vehicle may potentially use obstructions for support as it

climbs over those obstacles which it decides to not simply ignore.

A second advantage of legs involves the means of obtaining traction in soft

soil. A wheel or track creates a depression or rut from which it must continually

work to climb out. Slippage causes the wheel or track spin, possibly digging a

deeper hole- A leg, however, may be lifted vertically out of its depression,

minimizing the work required. In addition, any back slip caused by the vehicle

stepping pushes up soil behind the foot and improves traction. [Ref. 2]

www.manaraa.com

The combination of flexible coordination and increased traction provides a

potential for greater speed and less power consumption while operating over rough

and otherwise unsuitable terrain. Other advantages of legged locomotion include

possible improved comfort in ride due to the adaptive nature of legged support on

uneven terrain, the ability to test soil conditions prior to placement of weight on

the legs, and the relatively small footprint left in the soil. The latter may prove

especially important for agricultural work, where the disturbance of crops is to be

minimized, or for military vehicles navigating areas suspected of containing

landmines.

A. GOALS

The purpose of this study is to explore a new type of gait and steering

algorithm for the use of legged walking machines. The gait is a particular type of

tripod gait, which can be considered as an extension of the temporal follow-the-

leader gait [Ref. 3]. into the spatial domain. The steering algorithm to be

investigated along with this style of gait borrows from the concept of driving a

wheeled tractor-trailer vehicle. It is believed that this steering algorithm may be

particularly well suited for the fixed foothold position requirements of follow-the-

leader gaits.

The machine chosen as a physical reference for the study is the Adaptive

Suspension Vehicle (ASV). This is a self-contained, six-legged vehicle currently

8

www.manaraa.com

being evaluated at the Ohio State University for rough-terrain locomotion. The

ASV is a Defense Advanced Research Projects Agency (DARPA) proof of concept

project.

A secondary goal is to develop a simulation model with which to study

walking gaits and control algorithms in general for the ASV. This model is

developed along the general lines of the simulation previously presented by Lee

[Ref. 4], incorporating several of his model's features, including omni-directional

control, foot movement, and body attitude and altitude regulation algorithms. In

addition, this simulation is to have the features of operation in either the new

follow-the-leader tripod gait mode or in Lee"s "forward wave" tripod gait mode,

an enhancement of realism with a detailed color graphics display, and a menu

system controlled with a single mouse button.

B. ORGANIZATION

Chapter II provides a brief overview of the previous work relating to this

study. It includes a discussion of state of the art legged vehicles, tripod follow-

the-leader gaits, tripod gaits, stability and simulation displays.

A detailed discussion of the ASV simulation problem is presented in Chapter

III. This chapter covers the configuration of the vehicle, the gait and steering

algorithms, the simplifications assumed in the construction of the model, and the

kinematics involved in making the ASV model walk. The final section in this

9

www.manaraa.com

chapter describes the IRIS-2400 simulation hardware and software on which the

model was developed.

The simulation program's operation and functions are presented in Chapter

IV. This includes a complete description of the operation of the program controls

and display features. This is followed by a discussion of the means by which

graphics are programmed on the IRIS, and by a description of the organization

and flow of the program and its modules.

Chapter V is a review of the performance of the simulation. It includes a

brief subjective view on the feel of driving in the two modes.

The final chapter summarizes the contributions of this study. It also contains

comments on possible directions for future research. The program code is listed in

the appendix.

10

www.manaraa.com

II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

The last quarter of a century has witnessed intense efforts to build machines

that walk. Difficulties facing researchers include the problems of controlling the

many degrees of freedom necessary in a maneuverable leg. maintaining vehicle

stability, creating energy efficient motion, and adapting the walking motions to

unstructured terrain. With the advent of compact computer technology and

computer-aided simulation and design, serious progress is now being made in

overcoming these problems. [Ref. 5]

Several promising working designs have emerged in the last ten years. Some

of the most prominent include the Perambulating Vehicle II (PVII) at the Tokyo

Institute of Technology, the Carnegie-Mellon University hexapod. the Odetics Inc.

ODEX I, and the Adaptive Suspension Vehicle (ASV) developed at the Ohio

State University.

The PVII is a light-weight laboratory model quadruped, developed in 1980.

It features one of the first pantograph leg constructions designed specifically to

provide simplified leg coordination and energy efficient walking. Using tactile foot

sensors and a microcomputer mounted near the vehicle, the PVII is able to probe

for footholds and maneuver over obstacles. [Ref. 6]

11

www.manaraa.com

The hexapod developed at the Carnegie-Mellon University in 1982 is a self-

contained walking machine large enough to earn-

its operator. It uses a gasoline

engine to provide power to the legs via a set of hydraulic actuators. The

movements of the individual legs are controlled by a series of passive hydraulic

circuits. A built-in microprocessor interprets the driver's commands and specifies

the correct series of leg movement patterns to be used. This arrangement frees

the single microprocessor from the need to compute each foot trajectory. [Ref. 7]

The ODEX I is a commercial design introduced in 1983 [Ref. 8]. An

improved version, sometimes referred to as ODEX II. is being developed for near-

term use in nuclear power plants [Ref. 9]. The ODEX series makes use of a

unique circular arrangement of six planar pantograph legs which allow the

vehicles to adjust their profile for negotiation of narrow passages. The ODEX

walking machines are directed through a radio or fiber-optic link from the

operator to an on-board supervisory-level microprocessor. Each leg is controlled

by a dedicated lower-level microprocessor which receives instructions from the

supervisory level microprocessor. The new ODEX hexapod is also being equipped

with a center-mounted arm for remote manipulation of objects, such as valves, in

hazardous environments. [Ref. 8]

The Adaptive Suspension Vehicle (Figure 2.1), currently being tested at Ohio

State University, is the first computer-coordinated legged vehicle designed and

built for operation on natural terrain [Ref. 10] . This hexapod walking machine is

completely self-contained, and is capable of carrying the driver, a 500 lb. internal

12

www.manaraa.com

J3

G

•H
CO

c

a
in

p
CO

>
•H
-P

CM

13

www.manaraa.com

payload. computer and control circuitry, and power system, in an outdoor

environment. The ASV is the vehicle modeled in this study. A more detailed

description of the ASV follows in Section 3.B.

The remaining sections of this chapter concern gaits used by walking

machines, vehicle steering, the walking machine stability problem, and graphical

representation of the vehicle's motion. The gait and stability sections are oriented

towards six-legged vehicles such as the ASV.

B. GAIT SELECTION

1. Definitions

A gait is a mode of locomotion for a vehicle or animal distinguished by a

specific pattern of lifting and placing of the feet. Gaits in general may be

described using the event sequence notation introduced by McGhee and Jain [Ref.

11]. The integer i in such a sequence corresponds to the event of placing foot i on

the ground. The lifting of the same foot is represented by the integer /' + n.

where n equals the number of legs. For the ASV, legs are numbered on the left

side (1. 3. 5) from the front to the rear, and on the right side (2. 4. 6) in the same

order.

A periodic gait is one that repeats the lifting and placing pattern, and

thus is represented by one cycle of events. A periodic gait is said to be

nonsingular if no two of its events occur simultaneously. McGhee [Ref. 12]

demonstrated the existence of 39.916.800 possible nonsingular periodic hexapod

14

www.manaraa.com

gaits. The total number of possible hexapod gaits is a much larger and unknown

number [Ref. 5]. This makes the selection of an optimum gait a very difficult

problem. However, this thesis is concerned with a single type of gait sequence,

the tripod sequence. These are singular gaits, in that more than one leg is placed

at a given instant [Ref. 3j.

A periodic gait is considered symmetrical when the stepping pattern on

one side of the body is identical to that on the opposite side and separated in time

by exactly one-half of the gait period [Ref. 12]. Symmetry tends to simplify the

required leg coordination algorithms.

The pitch of a gait is the distance between footholds, measured in body

lengths (defined as the distance between the front and rear leg reference

positions). Leg stroke is the linear distance the foot travels with respect to the

body when occupying a particular foothold. Leg stroke is also expressed in terms

of body lengths.

2. Follow-the-Leader Gaits

A follow -the -leader (FTL) gait is one in which the middle and rear legs

on each side of the body step in the foothold locations previously occupied by the

leading legs [Ref. 13]. Creeping FTL gaits (in which at most one leg is in the air

at any time [Ref. 14]). were first studied by Ozguner, Tsai, and McGhee [Ref. 3].

Losing a temporal framework, they narrowed the number of possible FTL creeping

gaits to 30, of which they found five to be symmetrically realizable.

15

www.manaraa.com

Expanding to a spatial reference frame greatly increases the number of

gaits in this category. A tripod creeping gait can be defined as one in which the

legs are placed in alternating groups of three, with each group forming a tripod of

support. In the case of the ASV, the two possible tripods are the leg sets (1 4 5)

and (2 3 6).

The possible distinct tripod creeping gaits can be ennumerated using an

approach similar to that in Ozguner et al. [Ref. 3]. Choosing the placement of leg

1 as a reference, evidently there are two possibilities for the relative ordering of

legs 4 and 5. and three possible locations in each sequence for the insertion of the

alternate group of legs. Furthermore, the placing of the alternate leg group (2 3

6) can be accomplished in six distinct ways. Table 2.1 lists the 36 possible

nonsingular placing sequences.

It might first appear strange that the sequence (12 3 6 4 5) is included

in Table 2.1. However taking two periods together, the sequence becomes

(123645123645). which clearly shows that the placement of the legs

occur in alternating groups of three.

Comparing the entries in Table 2.1 to those in the table of Ozguner et al.,

one can see that none of these sequences are listed in the latter work. This is

because the sequences here are not temporally follow-the-leader. Yet they all are

spatial FTL gaits. This can be seen from the gait kinematics of the example

shown in Figure 2.2.

16

www.manaraa.com

TABLE 2.1. PLACING SEQUENCES FOR TRIPOD CREEPING FTL GAITS] 1

Gait Placing Tripod 2 Tripod 1 Tripod 2

Number Sequence Insertion

Position

Subsequence Subsequence

1 123645 145 236

2 126345 145 263

3 132645 145 326

4 136245 145 362

5 162345 145 623

6 163245 145 632

7 123654 154 236

8 126354 154 263

9 132654 154 326

10 136254 154 362

11 162354 154 623

12 163254 154 632

13 142365 2 145 236

14 142635 2 145 263

15 143265 2 145 326

16 143625 2 145 362

17 146235 2 145 623

18 146325 2 145 632

19 152364 2 154 236

20 152634 2 154 263

21 153264 2 154 326

22 153624 2 154 362

23 156234 2 154 623

24 156324 2 154 632

25 145236 3 145 236

26 145263 3 145 263

27 145326 3 145 326

28 145362 3 145 362

39 145623 3 145 623

30 145632 3 145 632

31 154236 3 154 236

32 154263 3 154 263

154326 3 154 326

34 154362 3 154 362

35 154623 3 154 623

36 154632 3 154 632

17

www.manaraa.com

q^> o QH>

6^ o
Transfer Phase

9^ o
/

O &-> o \ o^

Support Phase

o o-> o

o o 6^>

o o Q-> O

o o c5—

>

o o o->

Figure 2.2 Sequence of Stepping for a Tripod FTL

with Pitch of 1/3 and Continuous Body Motion

18

www.manaraa.com

It is possible to alternate body motion with leg placement in the tripod

gait (Figure 2.3). This yields a pattern of movement that is compatible with the

general notion of a creeping gait [Ref. 3]. It should be noted, however, that while

such a strategy may improve the static stability of the gait [Ref. 3], the

intermittent body motion increases the leg stroke by a factor of two, which

greatly increases the required working volume of the legs. For this reason, and

also because intermittent body motion slows the average vehicle forward speed,

only the continuous body motion alternative will be considered further in this

thesis.

3. Singular Tripod Gaits

Tripod gaits have proved to provide a good compromise between

stability, maneuverability, and ease of control for the Ohio State University

Hexapod. the ODEX I. and the ASV. For this reason tripod gaits were chosen for

this simulation study.

It can be seen that a tripod gait is actually a special limiting case of a

creeping gait, where the time between the placement of individual legs within a

tripod grouping approaches zero. Of the very large (unknown) number of gait

sequences possible, only one can be classified as a singular tripod gait sequence.

All differences among varieties of tripod gaits are therefore a function of

kinematics onlv.

19

www.manaraa.com

v-> ° 9

o © ef-> o 6

Move legs

All legs

supporting

O 6 O

o 9 o q>

O <fc
Qr O

Move body

o Q o —> P 9 o

Move legs

O O —> <0 © O ->

Figure 2.3 Sequence of Stepping for a Tripod FTL with

Pitch of 1/3 and Alternating Body and Leg Motion

20

www.manaraa.com

The most frequently used tripod gait is the limiting form of the

forward wave gait, where the duty cycle
1

, 0, approaches 1/2 [Ref. 4,5]. This

study introduces the singular FTL tripod gait. Both of these gaits are

implemented in the walking algorithms of this simulation and are described

further in Chapter III.

It is interesting to note that potentially the fastest forward wave tripod

gait for the ASV is an FTL tripod gait with a pitch of one (Fig. 2.4). This of

course can only be considered a true FTL gait if the feet are assumed to be

dimensionless. In order to prevent the legs from interfering with one another, the

duty cycle might be made slightly less than 1/2. This would momentarily leave

the vehicle with no supporting legs in contact with the ground. It would also

have the disadvantage of not providing sufficient time for possible foothold

searches by the leading legs.

C. STEERING

There are several different approaches to steering currently used by ground

vehicles. The most familiar method is articulated, or automotive style steering

[Ref. 15]. With a steering wheel, accelerator and brake, the driver of an

automobile can directly control the vehicle's turning radius and forward velocity.

The duty cycle is the fraction of the leg cycle used for supporting the body.

21

www.manaraa.com

o."'H>

Transfer Phase

Support Phase

O,
.. -> \->

'->

O'

x -» V-»

'->

Figure 2.4 Sequence of Stepping for a Tripod FTL

with Pitch of 1 and Continuous Body Motion

22

www.manaraa.com

Tracked vehicles, on the other hand, most frequently utilize skid steering. By

operating the sets of tracks at differing rates, the driver controls the turning rate

and forward velocity of the vehicle.

Tractor-trailers use still another type of steering. Here the driver steers far

forward of the vehicle's center of gravity. The trailer follows along in the path of

the cab. with the steering of its center of gravity lagging behind the steering of

the cab. Furthermore, since the trailer's wheel axle orientation constrains its

motion, the trailer is restricted to a larger turning radius than the cab is capable

of steering.

Specially designed wheeled vehicles may use omni - directional steering [Ref.

16] . This rarely used method allows the driver to specify turning rate and

velocity in any horizontal direction.

Legged vehicles have historically used similar steering approaches. McGhee

and Iswandhi [Ref. 17], introduced a two-axis joystick control, analogous to

articulated steering, in which one axis controlled the turning radius and the other

controlled forward velocity. Orin [Ref. 18], applied three-axis joystick control to

the Ohio State University Hexapod, a small laboratory scale walking vehicle.

This allowed forward, lateral and rotational velocities to be specified by the

driver, providing steering control much like that experienced in a helicopter. The

current ASV uses a similar three-axis joystick control.

Tractor-trailer style steering has not yet been applied to walking vehicles.

This approach, which will be developed in this thesis, should give improved two-

www.manaraa.com

axis control to the driver for moving through areas of restricted maneuverability.

The driver need only be concerned with maneuvering the front end of the vehicle.

The body of the vehicle will follow along the proven path established by the

footholds used by the front pair of legs.

D. STABILITY

The problem of vehicle balance is a vital concern for walking machines and

has been a focus of many studies. Legged vehicles may maintain their stability

using one of two methods, static balancing [Ref. 19j or dynamic balancing [Ref.

20].

Static stability is attained by maintaining the vertical projection of the

vehicle's center of gravity within the polygon defined by the supporting legs [Ref.

5]. This method is conceptually simple. It is. however, only valid for stationary

or slow moving vehicles, as it neglects the effect^ of inertia on stability.

Dynamic balancing is a complex process which places fewer restrictions on

vehicle velocity. The vehicle may be allowed to momentarily move into a

statically unstable configuration, so long as. over time, an adequate base of

support is provided [Ref. 20]. This is the mode of balancing normally used by

man and most vertebrate animals. It remains an extremely complex process,

however, which is difficult to reproduce with legged vehicles.

This model uses only the static criteria for stability. Having the vehicle

limited to reasonable velocities and the six legs placed in alternating tripod

24

www.manaraa.com

support patterns ensures a high degree of stability. To guarantee stability, the

usable working volume for each leg is reduced. Figure 2.5 shows a worst case

situation demonstrating that, if the legs are confined to their respective

constrained working volumes, the vertical projection of the center of gravity will

always fall within the triangular pattern formed by the supporting legs. A further

discussion of the constrained working volume can be found in [Ref. 4].

E. GRAPHICS

There is a wide spectrum of available options from which to choose in the

field of graphic displays. Decisions are required as to running the simulation on

monochrome or color monitors, the type and number of dimensions for the

projection, the use of line or solid figure representation, acceptable display

resolution and update time, and whether to employ special hardware options.

State of the art graphics machines also offer possibilities which include shading,

reflectivity of surfaces, and multiple light sources. A compromise must be made

between functionality, visual realism, and cost in order to realize an effective

simulation.

Past simulation models featuring the ASV [Ref. 4.21.22] have concentrated on

basic functionality in the display. The vehicles and terrain were represented by

simplified line drawings on a monochrome monitor. This study attempts to take

advantage of recent developments in special hardware and software for graphics

workstations, in order to create a more realistic and convincing simulation. It is

25

www.manaraa.com

Figure 2.5 Constrained Working Volumes

for Adaptive Suspension Vehicle

26

www.manaraa.com

simulation. It is believed that the IRIS-2400 [Ref. 23] represents a good

compromise between state of the art quality, cost, processing time and

availability. This system was therefore selected to support the work of this thesis.

F. SUMMARY

This chapter provides background information on previous research leading to

this study. Discussions include a brief survey of examples of the state-of-the-art

walking machines, follow-the-leader and tripod gaits, vehicle steering, and the

question of stability for walking machines. In addition, several concerns are

expressed regarding the graphics displays used to portray the action of the

walking vehicles.

The following chapter contains a detailed statement of the ASV simulation

problem to be solved in this thesis.

27

www.manaraa.com

III. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

This chapter is intended as a description of the nature of the simulation

modeling problem. In it is a discussion of the configuration of the ASV, the

mathematics governing its motion, and foothold selection and steering algorithms

for two selected gaits. Also covered are the simplifications deemed necessary in

the creation of the model. The final section includes a brief description of the

modeling facilities.

B. ASV CONFIGURATION

The Adaptive Suspension Vehicle (ASV) is a self-contained, six-legged

walking machine designed to traverse uneven terrain. The operator, sitting in a

cockpit at the front of the vehicle, controls the vehicle either at a supervisory level

by selecting body translational and rotational velocities and allowing the vehicle

to automatically place the feet, or by coordinating the individual legs in a

precision-footing mode. The various control modes are discussed in [Ref. 10].

The vehicle is equipped with an optical scanning rangefinder. mounted above

the cab. for short-range sensing. The laser rangefinder has a range of 10 m and a

field of view of 40 degrees on each side of the body axis, and from 15 to 75 degrees

below the horizontal. [Ref. 10: p. 8]

28

www.manaraa.com

A single 900 cc four-cylinder motorcycle engine is sufficient to power the ASY

over sustained periods of time. This is possible due to the aluminum construction

of the frame and legs, which make the vehicle relatively light (2700 kg) for its size

(3.0 m height. 5.2 m length) [Ref. 10:pp. 8-10]. Power is distributed to eighteen

hydraulic actuator pumps through an energy storage flywheel and a series of

shafts and toothed belts.

Seventeen Intel 86/30 single-board computers are used for onboard processing

and control. One board is dedicated to each leg for motion control and leg sensor

data processing. Four more boards compute stability, check actuator motion

limits, and generate leg commands based on the operator's control inputs and the

internal terrain model. Two additional boards are used for cockpit displays and

controls. The terrain model is generated by the remaining five single-board

computers using the data gathered from the optical rangefinder. [Ref. 10: pp. 8-

10]

The design of the ASV's legs features a two-dimensioned pantograph

mounted on a baseplate hinged to the body (Fig. 3.1 and 3.2). This design offers

the advantages of energy efficiency resulting from decoupled ground reaction force

components, and simplicity of control [Ref. 5.6. and 24]. Vertical and horizontal

motion relative to the baseplate are provided by independent actuators mounted

to the plate. Abduction and adduction motion is provided by a third actuator

mounted on the body.

29

www.manaraa.com

5£3+4dl

view from the side

0->y

view 1 rom /////////

Figure 3.1 ASV Leg Configuration (1 of 2)

30

www.manaraa.com

/////////////////////////////
view from the side

A
z

£ y
B

view from the front /////////

Figure 3.2 ASV Leg Configuration (2 of 2)

31

www.manaraa.com

C. SELECTED WALKING ALGORITHMS

1. Gaits

The model used in this simulation study currently supports two styles of

walking patterns. The first, closely following that used by Lee [Ref. 4] features a

periodic tripod forward wave gait. The second is a periodic tripod

follow -the leader (FTL) gait [Ref. 3]. Both gaits have unique advantages to

offer the operator.

The great advantage inherent in the forward wave gait lies in the

maneuverability it offers the walking vehicle. The ASV. operating in the forward

wave gait mode, is free to place its feet anywhere within a constrained working

volume during the leg placement phase of the walking cycle [Ref. 4:pp. 59-62].

This freedom allows the vehicle great flexibility in range of movement; even to the

point of permitting turning in place.

The price for this freedom of choice for leg placement is that a foothold

must be found and tested for each time a leg is placed on the ground. In rough or

obscured terrain the process of probing and testing could occupy virtually all of

the vehicle's onboard processing capability. Thus, the vehicle's speed over ground

could be severely limited.

In this type of terrain the follow-the-leader gait could prove more

advantageous. The follow-the-leader gait requires probing and testing only for

the forward two legs. Since the following legs step precisely where the leading

legs have gone, no further searching is needed. On difficult or dangerous terrain.

32

www.manaraa.com

where extensive probing and testing of foothold is required, the FTL gait promises

both greater ground speeds and more security.

The notable disadvantage of the FTL gait is that its use drastically

constrains the vehicle's movement. Maneuvers such as sideways stepping and

turning in place are not possible. Turning the vehicle requires a large radius

turning circle, similar to that needed by a tractor pulling a long trailer.

2. Steering

The two walking algorithms utilize different control schemes matching the

\mique gait characteristics. The forward wave gait steering mode allows the

operator to independently specify longitudinal velocity, lateral velocity, and

azimuth angle rate (ideally using a three-axis joystick). This allows the operator

to take fully advantage of the gait's maneuverability. In the absence of a three-

axis joystick for this simulation, these body translation and rotation rates are

input through three sliding bar controls using a mouse-driven cursor on the

display screen.

The vehicle in the follow-the-leader gait mode, with its inherent

restriction that the body remain between the two parallel foothold tracks, behaves

very much like a tractor and trailer or a wagon. Just as the truck driver steers

the cab allowing the trailer to follow in its path, the ASV operator in this mode

steers by specifying the desired motion of the vehicle steering point. This point

lies just behind the cockpit, mid-way between the two front legs, along the line

joining the centers of the two working volumes. In the place of a steering wheel

33

www.manaraa.com

and acceleration pedal, the operator uses a two-axis joystick (simulated with a

mouse-driven cursor on a steering pad), to specify the desired magnitude and

direction of the cockpit's relative velocity vector.

The truck and trailer or wagon style steering commands are translated

into desired longitudinal and lateral translation and azimuth rotation rates in

order to maintain compatibility with the wave gait control algorithm in the

program. This is done by first transforming the steering point (vehicle head)

actual position and desired velocity to Earth coordinates, {*
h r- yhE ~ ~hE) and

(
x
dhE- y<ihE-

'

z
dhE)

respectively. The desired cockpit position (x^, ydh£ . z
dhE)

is

determined by

XdhE
=

~~ XhE + XdhE ' A/
(
3 - 1

)

vaE =
yhE

+ ydhE • A/
(
3 - 2

)

Z
dhE " ZhE " Z

dhE ' A/
(
3 - 3

)

where At is the program display time increment. Using the desired cockpit

position and the centroid of the middle and rear legs' footholds (in Earth

coordinates) (fh ,fh Jh), the desired azimuth angle $
d

is obtained.

^
d
= tan

VdhE ~ fh
i

x
dhE ' fh z

.

(3.4)

34

www.manaraa.com

The desired new position of the body's center {^dE -ydE - *</£)' *s tnen f°und by

L
xdE X

dhE
—cos\^
2

L

ydE
"

^dhE
"

2

Z
dE

ZE

(3.6)

(3.7)

where L is the length between the center of the working volumes of the forward

and rear legs.

The desired Earth translation rates (x
d£

and ydE] and Euler azimuth

angle rate (w . E) are determined as

XE
(3.8)

XdE
~~ XE

XdE
'

At

ydE - Ve

VdE
-

At

*
d

*

•""'dzE

A*
(3.10)

with ^ being the current azimuth angle. These Earth and Euler rates are then

translated to body rates (i,„, y ,„, ^j,d) by

x
dB = xdEcos* T ^£sin*

(
3 -U

)

ydB = ydEzo^- xdE^ (
312

)

35

www.manaraa.com

3. Foothold Selection

As indicated in the above section, a new foothold must be selected for

each leg while operating in the forward wave gait mode. In order to maximize the

foothold"s usefulness it should be placed so that the foot remains in the

constrained working volume during the leg's support phase for a maximum length

of time. The optimal foothold position is determined as the "point on the surface

of the constrained working volume such that [the leg's] support trajectory is

predicted to pass through the foot reference position" [Ref. 4: p. 100]. To simplify

the computation, the reference position is taken as the center of the working

volume and a straight line is used to approximate the foot trajectory. A line is

projected opposite to the direction of the predicted foot velocity vector at the

reference point. The intersection of this line and the boundaries of the

constrained working volume is then the desired foot position. Subsequent

variation of the body velocity will alter the supporting foot trajectory, potentially

resulting in a suboptimal foothold.

The follow-the-leader gait foothold selection process is much different.

New footholds for the leading two legs are found by projecting a line along the

velocity vector of the vehicle's cockpit. At a set distance (1/12 the length

between the forward and rear hip joints), along this line, another line

perpendicular to it is projected. This distance is one half the leg stroke of the

vehicle while operating with a pitch of 1/3 (Figure 2.2).

36

www.manaraa.com

The desired foothold is determined by where the second line intersects a line

running through the center of the working volume parallel to the body's

longitudinal axis (Figure 3.3).

As a front leg abandons its current foothold, that position is recorded for

use by the middle leg behind it. In turn, the middle leg foothold positions are

saved for use by the rear legs. Thus, during each complete leg cycle, two new

foothold positions are computed. This compares favorably to the six new

footholds needed while using; the forward wave gait.

selected
foothold longitudinal

axis of the
working volume

relative heading

B

Figure 3.3 New Foothold Location

37

www.manaraa.com

The current program allows the driver to start operation of the vehicle

either using the forward wave gait or the follow-the-leader gait. Once started, the

program must be reset before switching modes.

D. MODELING SIMPLIFICATIONS

There are many simplifying assumptions contained within this model of the

ASV. These simplifications were made largely in an effort to speed the

development of such features as the follow-the-leader gait. However, the program

framework was devised with future work in mind. Thus, wherever possible room

was left for generalization and expansion.

The most notable simplification in the simulation model deals with terrain.

The ground is represented by a smooth, level, checkerboard pattern. Although

the ASV was developed to be able to traverse unstructured terrain, there are no

obstacles or obstructions in the current model. Uneven terrain will require

inclusion of an algorithm for estimating the support plane beneath the vehicle,

foot sensors, and a new terrain display routine. A foothold probe and testing

routine will also be needed.

As a consequence of the use of fiat terrain, the constrained working volume

adjustments for uneven terrain [Ref. 4: pp. 109-117] and body regulation plans for

varying slopes [Ref. 4: pp. 87-)\ were not required. However, the basic structure

for body attitude and altitude regulation has been retained in the program

38

www.manaraa.com

modules of this thesis. Consequently, inclusion of sloped terrain should

necessitate only minor program changes in these areas.

The model contains only kinematic features of the ASV operation. This

means that there are no limits on vehicle acceleration imposed by the model. In

order to prevent unrealistic performance on the part of the displayed vehicle, a

filter was placed between the commanded inputs and the response of the vehicle.

The kinematics and filter for simulating dynamic constraints are described in the

section below.

E. MODEL KINEMATICS

The kinematics of the model of the ASV presented here closely follow those

developed in the computer simulation of Lee [Ref. 4]. Body motion is specified in

terms of translation rates along the body's forward, lateral, and vertical axes (x.

y. and z repectively) and rotation rates around these axes. The driver of the

vehicle may directly or indirectly con)1 the desired forward and lateral

translation rates and the rotation rate around the vertical axis. The remaining

three degrees of freedom are automatically regulated to maintain a desired body

attitude and altitude with respect to the ground.

Vehicle" "dynamics are simulated through the use of a simple control filter

inserted between the ordered rates and the actual bodv rates. As a result the

39

www.manaraa.com

body moves with a smooth, exponential transition in response to driver and body

regulator control commands.

In order to realize these filtered body rates, the rates are first converted to

earth coordinate translation rates and body Euler angle rates. Euler integration is

then performed to produce translation distances in earth coordinates and angular

displacement around the three body Euler axes.

1. Coordinate Systems

The ASV model makes use of two coordinate systems, earth (xE . yF , zF)

and body (x„. y B
. :

{i
). in its calculations. The earth coordinate system is used

wherever it is required to specify absolute position or velocities of the body. feet,

or terrain. The earth coordinate system is defined such that the zE axis is positive

upward and the unit vectors xF , yE and zE are mutually orthogonal.

The body coordinate system is useful in describing operator control and

the coordination of body and legs. The origin is defined as the center of the main

body section (excluding the cockpit). The z„ axis is projected upward through

the top of the body, while the ;„ axis is forward along the longitudinal axis and

the yR axis is projected to the body's left, forming the transverse or lateral axis.

Earth coordinates are transformed to body coordinates using the

relationship of equation 3.14.

40

www.manaraa.com

XE XB

yE
= H

Vb

ZE ZB

1 1

(3.14)

T T
where the position vectors [xE , yE , z£ . l] and [xg , yg . zg , l] describe the same

point in space in earth and body coordinates respectively and H is a 4 x 4

homogeneous transformation matrix [Ref. 25]. The homogeneous transformation

matrix can be derived by decomposing the transformation into a translation from

the earth coordinate origin and a series of rotations about the Euler axes:

xyz W <P fc)
(3.11

The homogeneous transformation matrix T
y
represents the translation

of the body's center to its current position (d , d . d_). The first rotation about

the body's vertical axis by the azimuth angle $ is represented by the matrix T^.

The body is then rotated about its new lateral axis by the elevation angle, $. and

then about the newly formed longitudinal axis by the roll angle. 0. 1

1 Other notations are sometimes used for these angles. For example, in [Ref. 19], 8 signifies

elevation angle and Q denotes roll angle.

41

www.manaraa.com

The four homogeneous transformation matrices [Ref. 25: p30J are:

zyz

1 d
I

1 d
y

1 d
z

1

.3-16)

T1
*

cos* -sin
1®

sin^ cos*

1

3.1'

r cos$ sin3>

10
-sin$ cos$

1

10
cos0 sin©

-sinQ cos©

1

3.19]

42

www.manaraa.com

Substituting equations 3.16, 3.17. 3.18. and 3.19 into 3.15 yields:

H

cos^cos$ cos^sin^sinO-sin^cos© sin^sinQ-rcosN&sin^cos© d

sinVfcos^ cos^cosQ + sin^sin^sin© sin\I/sin<I>cos@ cos\I>sin© d

sin<& cos<J>sin@ cos$cos©
;3.20)

2. Body Regulation

A simple control algorithm is used in this and Lee's model to maintain

the attitude of the vehicle and its height above the ground. The inputs are the

estimated support plane and the plane formed by the body's lateral and

longitudinal axes.

Body attitude regulation is accomplished by rotating the present body

plane towards the desired body plane. The desired plane can be expressed as a

function of the terrain slope and be adjusted to suit the driver .

The unit vector B, along the rotation axis. (Fig. 3.4) is given by

B
k

-

'B ~D

zb xzd\

[*, K K\ [3.21)

where zB and zD are the unit normal vectors of the current and desired body

" In the current level terrain model, the desired body plane angle is set equal to zero.

43

www.manaraa.com

Lb'

00

Z
u.

c
X
Lm

LU

LU

>
o

i-

<

u
u
D
C

a.

u

B

B

Figure 3.4 Rotation Axis and Angle

planes and k = 0. The rotation angle, 7, is given by

7 = cos
_1

(i5
• zD) (3.22)

These values are used in the control function to obtain the rotation rates around

the body's longitudinal axis, jj . and about its transverse axis u .

Body altitude is defined as the distance along the body plane's unit

norma, ora the estimated support plane to the body's center of gravity.

44

www.manaraa.com

A mapping function similar to that used for the body plane can be used to relate

the desired altitude. hD . to the current terrain slope, h
4

3. Rate Computation

The differential equation describing the simulated dynamics of the control

filter is

1

y{t) -- ~ y{t) (3.23)
r

where r is the time constant of motion and y(t) is difference between the desired

and actual position variable. Integrating both sides of equation 3.10 yields an

exponential response

l

y[t) - '

r

The control filter for altitude is then

(3.24)

1

ZB ~ ~~ (
hD~h)- (3.25)

r
i

Similarly the equation producing the attitude control response is

1

7 = -— 7- (3.26)

T

In the current model the desired height is set to a constant value

45

www.manaraa.com

The rotational vector 7, decomposes into rotation vectors about the forward and

lateral axes, yielding:

1

j

T

~ kS (3.27)

1

w
„
= ~~ k

v
1 '

(3.28)

Velocity is related to acceleration using the same filter. This is

accomplished by letting

y{t) = i(t) (3.29)

and substituting into equation 3.23, yielding:

£
1

C x{i) -- -— x{t). (3.30)
c T

The accelerations for the remaining three rates are

x — —— x — X
B ' B commanded B current

.. 1 .

"fi ^B commanded ^B current' [S.oZj
T
2

1

—

u

v 2 commanded z commanded z current' \S.6i

':

l Tsing the frrrear approximation.

Avelocity ~ Aff'me- acceleration, (3.34)

the rates are determined by equations 3.35 through 3.37.

46

www.manaraa.com

At

B new
X X I ~i~ X

> B commanded B current ' B current

yB m

At

h

At

*B commanded ^B current' ^B current

OJ commanded z current' z current

(3. 36]

[3.37)

where At is the time increment and r„ is the time constant of motion.

Body positioning in this computer model is achieved by translating the

body center to its proper earth coordinate position and then successively rotating

the body about its vertical, transverse and longitudinal axes. In order to do this,

body rates are first transformed into earth coordinate translation rates and body

Euler angle rates using the method presented by Frank and McGhee [Ref. 19].

1 tan^sin© tan$cos©

cos© sin©

sec$sin© sec^cos©

(3.38)

Roll, elevation and azimuth angles and translation distances are then found

through simple Euler integration:

V n iH
"+ y ' Atime. (3.39)

47

www.manaraa.com

4. Leg Kinematics

The ASV's pantograph leg contraction yields relatively simple kinematic

and inverse kinematic equations. These equations differ slightly from those

presented by Lee >Ref. 4]. This can be attributed to the use of more accurate

dimension measurement than those assumed by Lee.

For the front left leg (leg number one) shown in (Fig. 3.1 and 3.2). the

foot position is given by

i, = od
2
+ \ (3.40)

y, ---- (5/3
- 4<f,)sin0 -f /

4
cos0 - h

}j
(3.41)

z. ----
/
4
sin0 + (5/3 - 4d,)cos0 (3.42)

where the hip position [h . h . h) and foot position (x,. y,. z,) are given in body

coordinates, and d d„, and are the joint variables.

The inverse kinematic equations for the joint variable gL, derived from

equation 3.40 is

1

d.
2

- ~ (x
f
- h

t). (3.43)

5

Rearranging and squaring both sides of equations 3.41 and 3.42 yields,

(/'sin"0 - a /
4
sin0cos0 + /^cos'0 = (y f

- h)' (3-44)

/
4
sin"0~- a /

4
sin0cos0 - g"cos"0 = (2. - h

y)
(3.45)

48

www.manaraa.com

whore a (5L - Ad .). Solving equations 3.31 and 3.32 gives.

-
\

4

- I

= sin
-l

a (y
f

- h
y

) +l
4
(z

f
- hh

a' + /,

[3.46)

(3.47)

In addition to the joint parameters, this model requires leg upper (thigh)

angle, a. the lower leg (shank) angle, 7, and the knee position in body coordinates

(x,. y,. z,). The thigh angle is given in terms of joint variables as

7T

a - — - tan

d n \

/3 + rfJ

cos

',
- V <

d
2

-L K * y

)

2 '1 v7^ * d
,)

-
*-

(3.48)

and the knee position as

1, = Lcosq - //
k 1 1

y k
--- (/.-,sina rfjsin© - /

4
cos0 + h

z, - /sin© - (/^sina - d)cos0

The knee an^le is

(3.49)

(3.50)

(3.51)

-) = tan

I z — z
~k ~f

{ x x
f

'

0.0.

All six legs of the ASV share similar geometries. The remaining

kinematic and inverse kinematic equations can be obtained from equations 3.40

through 3.52 with appropriate sign changes.

49

www.manaraa.com

F. SIMULATION FACILITIES

1. Hardware

The computer simulation presented here is designed to run on either of

the two Silicon Graphics. Inc. IRIS-2400 workstations currently in the computer

graphics laboratory in the Department of Computer Science at the Naval

Postgraduate School. The IRIS (Integrated Raster Imaging System) consists of a

Geometry Pipeline, a general purpose microprocessor, a raster subsystem, a 60Hz

non-interlaced high-resolution RGB display monitor and a keyboard. In addition

each unit has been equipped with two 72 megabyte disk drives, a cartridge tape

unit, a Moating point accelerator, and a three-input mouse. The Geometry

Pipeline is a series of ten or twelve custom VLSI chip matrix multipliers. L'nder

the control of the applications graphics processor, it performs matrix

transformations, clipping and scaling of coordinates. The output is sent to the

raster subsystem which performs functions such as filling in pixels, shading,

depth-cueing and hidden surface removal.

The first IRIS system is based on a Motorola MC68010 processor with 5

megabytes of CPU memory and a 1024 x 786 x 8 bit display memory. It is also

equipped with a digitizer tablet. The second IRIS system is a more capable

Turbo-2400. It is based on a Motorola MC68020 processor and has 4 megabytes

of CPU memory and a 1024 x 768 x 32 bit display memory. An Ethernet network

connects both workstations to two VAX 11/780's and one VAX 11/750.

50

www.manaraa.com

2. Software

The IRIS Graphics Library contains a large number of graphics

commands and utilities. This allows the user great flexibility in the choice of

coordinate systems and display techniques. While the software is written in C.

the graphics commands may be called in C. FORTRAN, Pascal, and Lisp. The

code for the model presented in this study is written exclusively in C.

G. SUMMARY

The previous sections of this chapter outlined the physical constraints,

simplifications, and tools used in the development of this simulation. The next

chapter describes the operation and construction of the actual simulation

program.

51

www.manaraa.com

IV. SIMULATION PROGRAM

A. INTRODUCTION

In this chapter the simulation program is presented. The first section consists

of a user's guide, with complete instructions on how to use each program feature.

The second section introduces the working environment for graphics on the IRIS-

2400. The final section describes the internal operation of the simulation program

and discusses the flow through the major modules. A complete listing of the

program is provided in the appendix.

B. USER'S GUIDE

1. Starting Up

The program walk.c is relatively simple to use. It is entirely menu-driven,

with a single mouse button and cursor performing all selection functions. To start

the program, type the command "walk".

Immediately displayed on the monitor is a split screen view of the control

panel and the ASV on its terrain (Fig. 4.1). The right half of the screen features

a three-dimensional projection of the ASV on a green and white checkerboard

plane against a blue backdrop. The user's vantage point is fixed relative to the

center of gravity of the vehicle (above and initially to the vehicle's left side), so

that the vehicle will continuously remain in view while walking.

52

www.manaraa.com

UJ
inu EXIT

PROGRAM

Al

TITUDF

AND

AI

TITUDF

STATUS REPORT

LJ >—
Q => —
3 <= C
L. 3 l:

FTL
GAIT

a

b
en

•H
-P

8

CD

•H

53

www.manaraa.com

The left half of The screen contains a two-dimensional representation of

the control panel. Initially it features only the six yellow selection panels of the

main menu on a cyan background.

2. Menus

A menu item is selected by placing the cursor over the corresponding

panel and clicking the middle mouse button. Pressing the button down will cause

the panel beneath the cursor to be highlighted in red. as a potential choice.

Releasing the button selects the highlighted menu item. If no changes are desired

in the current menu selection, simply move the cursor to a portion of the screen

outside the menu selection region and release the mouse button. Selected menu

items are highlighted in bright yellow.

3. Forward Wave Gait

In the forward wave gait mode, vehicle velocities are specified in terms of

body axis translation and rotation rates. Three of these rates - longitudinal

velocity, lateral velocity, and yaw rate, are directly controllable by the operator.

The rates for the remaining three degrees of freedom are automatically adjusted

by the vehicle in order to maintain proper attitude and altitude. All rates in this

mode are defined with respect to the body's center of gravity.

Selecting the forward wave gait panel produces a secondary menu

displayed immediately below the main menu (Fig. 4.2). This secondary menu

contains three additional panels for use in specifying the vehicle's body rates. The

panels are operated in the same manner as those in the main menu. To the right

54

www.manaraa.com

in

at

c
a:

1- LD
i— Ox a:
L_ C

LLi LU
a a3 5— Q —_ Z ~
1— <E 1—

1 —
C <X

STATUS REPORT

G 3 —
3 <I <I
a. 3 J

FTI
GAIT

3 —I

u <e

s
LD

s
05

Q
LJ
a:

a: cO a;

S 59
S
sS

S
s>

C Q ~J_ a: lo
LT <z qjZ 3 LJ
a a: :>
a 3 _— u_ a;

TRANSLAK

LEFT
RIGHT

ROTATE

LEFT
RIGHT

55

www.manaraa.com

of the menu panels are six simulated LED readouts, used for displaying the

magnitude of the current and ordered rates.

Releasing the middle mouse button while the cursor is inside the bounds

of one of the secondary menu panels results in a sliding bar control panel being

displayed on the left edge of the screen (Fig. 4.3). Velocity commands are input

by placing the cursor within the black center region of the bar control area. A

yellow bar level indicator will rise or fall to match the cursor level, indicating the

commanded velocity value. No clicking of the mouse button is required. To set

the commanded input at the desired level, move the cursor to the desired height

and then slide the cursor horizontally until it is outside the center region of the

sliding bar panel. A red bar level indicator displays the current velocity of the

vehicle.

4. Follow-the-Leader Gait

Control while in the follow-the-leader gait mode is achieved by specifying

the desired relative velocity vector of the ASV's steering point. The operator, in

essence, points the vector in the direction in which the steering point should

travel, relative to the body longitudinal axis. As stated in the previous chapter,

the steering is very much like that of a long tractor-trailer type of vehicle. The

control algorithm factors in the magnitude of the desired velocity, footholds and

current velocity and automatically regulates the body's motion.

56

www.manaraa.com

UJ

UJ

r

i- a— ax a:

U. -U
a o
i- C —— z —
t- a —
5 a

i/i h-
^ a:— S
a b.
1— UJ
Ji a:

-j —
a => —
3 <X <T
L_ 3 L3

<x3 UJ

u <r
a a:

is
s>
5
si

s
s>

a:
UJ UJQ i—
S <T
H a.

s

Ifl

s

8
s>

C 2 U._ £ in
u\ c a:Z 3 UJ
<= a: ;>
a: o u.
i- u. a:

u.

_
en i—
Z t- Xd J. c
a; uj —
t- _i a:

LEFT
RIGHl

CO

a)

•H

57

www.manaraa.com

The follow-the-leader gait control mode is invoked by using the lower left

panel of the main menu. When this panel is selected, a white rectangular control

area appears directly beneath the main menu (Fig. 4.4). If the middle mouse

button is held down while the cursor is within this region, the cursor controls a

simulated two-axis joystick. The vertical axis represents the magnitude of the

relative velocity vector and the horizontal axis represents the direction. A solid

yellow line is used to indicate the current joystick position, and thus the input

values. The vehicle's actual relative cockpit velocity vector is indicated by a solid

red line.

5. Status and Warnings

The status menu option exists to provide the operator with numerical

data on leg and body position and movements. Selecting this item causes a

yellow and black display panel to appear below the main menu (Fig. 4.5).

Featured on this panel are the translation and rotation rates (with respect to the

body axes), the position of the vehicle's center of gravity (in Earth coordinates),

the vehicle's orientation (in Euler angles), the walking cycle period, the position of

each foot (in body coordinates) and the angles of various components of the legs.

The values are updated each display cycle.

During the operation of the vehicle, checks are made on operating

parameters. If a leg become positioned so that the foot is outside its

corresponding constrained working volume, a red warning box is flashed in the

lower left corner of the screen. Similarly, if the walking cycle period becomes too

58

www.manaraa.com

If!

Lu
FXIT

PROGRAM

|_| UJ
a a
h- Q h-
1-1 Z —
1— <t H-
_l h-

STATUS REPORT

UJ —
Q => —
3 <Z C
L- 3 L3

t—
_i <—

L. (J?

c

<D

Ho

•Ja

a)

CD

I

fe

59

www.manaraa.com

UJ
in
UJ
a:

C
<I
a:— 10

X £
UJ Q_

— z —— c —
3 a.— 5
— U.
in a.

o 5 —
3 C C
Lk. 3 13

_i —
<i

s ccs s> — <s

® ® S X "

— - s z —

. 3

i re aj c
"C k. — O
i i re

-
,. & w *
i c I

-
T It* Ul

k. L o o

8 "3
3 3

k. aj

3 w

iDLOSssis^rn.'s.o"

;s —i v tr

ffl *- kO Li 2k S— -^ ticks, rs

i i i

*-^-®(S>®®~- — (Si C
rv-(Si®S>©SXXlD(\
jt en jt in ® ®m v in at (s. id

g "7
' 77

—
i

ivrv ® s,® S — — -n ifm «- «- iv rs
• 10 ~* jt in ® ®

(si id -> otatkO 10— i ,- —
i i

nxcnkOCniD^kOi^ir
i I i I I l I I I I— «- — ^- — TT — r- — V

in in in

o o cq a a a
a a ex
- * * — = E
L k» — <- Q. E
a _ <xax x n c is

C
1)

V

b
CO

i—

i

a
CO

3
CO

I

LO

I
•H

60

www.manaraa.com

small, a yellow warning box is displayed. In addition to the warning, a

deceleration routine is activated to slow the vehicle until the period comes up to

an acceptable level [Ref. 4: pp. 66-71].

6. Reset and Exit

The reset option returns all vehicle parameters, including position, to

their original values. This feature was included to save time when making a series

of test runs. The exit option ends the program, clears the screen and returns the

user to the current UNIX shell.

C. GRAPHICS ON THE IRIS-2400

Figures are displayed on the IRIS-2400 by calling a series of short graphics

commands, called primatives. The primatives are interpreted into graphical

displays by the software and special hardware of the IRIS system. These include

commands for specifying color, drawing lines, circles, irregular polygons, and

printing text characters on the screen. There are also a series of primatives

designed to manipulate coordinate transformation matrices for the purpose of

scaling, rotating and translating figures.

A sequence of graphics commands may be grouped into a listing called an

object. This object list may then be conveniently executed using a single call.

Once created, the object list may at any time be edited as desired through the use

of object tags. The object, in essence, functions as a reconfigurable graphics

subroutine.

61

www.manaraa.com

Objects and figures in this program are displayed in the reverse order in

which they are called. The last object is overlaid in front (with respect to the

viewer's vantage point), of the previously called objects. An important exception

to this is the treatment of the back face of polygons. The reverse side of a

polygon, in the back face polygon removal mode, is considered transparent and is

automatically removed from the image as a hidden surface by the IRIS hardware.

This feature enables the display of more realistic appearing three-dimensional

objects.

In the double buffer display mode utilized by this program, the special display

memory is divided into two sets of bit plane buffers. As one buffer is having

display data written into it. the other is used to refresh the monitor. Once the

writing is complete, the functions of the buffers are swapped, and a new cycle of

writing commences. This display mode provides for a smooth simultaneous

update of the entire screen.

D. PROGRAM ORGANIZATION

The simulation program can be divided into three general sections;

initialization, simulation loop, and termination. The heart of the program, the

simulation loop, cycles through an input phase, which serves as the operator's

control interface for the vehicle: the calculation phase, in which the parameters

for the position and orientation of the AS\ r,
s body and legs are determined; and a

display phase. The initialization section performs tasks, such as defining

62

www.manaraa.com

coordinate systems and creating object lists, required to start up the loop. The

termination section clears the screen and buffers in preparation for the next IRIS

user. A flow chart featuring the program's primary modules is shown in Figure

4.6.

Since the order in which objects are called is critical in this display mode,

special provisions are needed to create a full 360 degree viewing coverage of the

maneuvering vehicle. Specifically, four separate ASV objects lists are created in

the object construction module of the initialization section. Each object has the

vehicle components ordered for proper viewing from one of four viewing

quadrants. The display section therefore needs only to determine from which

quadrant the vehicle is to be viewed and call the appropriate object.

The simulation loop is the dominant part of the code, containing the

overhelming majority of the program modules. The loop begins with a call to the

driver's command interface module. This module controls the operation and

display of the menu system, the status panel, and the sliding bar and joystick

controls, as well as processing F.T.L. gait steering commands. The organization

of the control module is shown in Figures 4.7 and 4.8.

63

www.manaraa.com

Initialize &
Make Object Lists

Driver Command
and Display

Body Rates

I

Optimal Period

Clean Up Graphics

<^~~ End ~~^>

Deceleration

Leg Phase

Foot Trajectory

Working Volume

D i s p 1 ay

Figure 4.6 Main Simulation Flowchart

64

www.manaraa.com

Command
Interface

Set 2-D
Coordinates

Middle Button
Status Change

No Change to
Middle Button
Status

Just
Pressed

Update Button
Status

6
Update Potential

Selection

Display-

Menus

Just
Released

Set New
Selection

Update Button

Status

Figure 4.7 Command Interface Module (1 of 2)

65

www.manaraa.com

+> -* en
•H U r-H

>i ri •H
o -P in

Cfi -P
-p >> C
<u

en •-s O

66

www.manaraa.com

Immediately following the command module are two checks on the program

status. If the exit option was selected in the command module, the loop is

interrupted and the program enters the termination stage. The reset option

causes a module call to re-initialize all working parameters.

The calculation phase of the loop is begins with the support module, where a

determination of the estimated support plane directly beneath the vehicle is

made. The position and velocity of the ASV's body is then calculated in the

body rates module (Figs. 4.9 and 4.10). The body kinematics used in this module

are discussed in section III.E.

The gait period is next calculated in the optimal period module. This module

us. - a optimal period control algorithm which considers the kinematic limit of the

supporting legs. In this algorithm, a period is calculated for each leg. based on

the time required for its foot to reach the limits of its corresponding constrained

working volume. The minimum of all of the supporting leg's periods is chosen as

the vehicle's optimal period. No foot should therefore be required leave its

constrained working volume while supporting the body. A backward gait period

is also computed for the use of the wave gait walking in the reverse direction.

[Ref. 4: pp. 63-69]

67

www.manaraa.com

Body Rates

Body Plane

Attitude

Desired
Body Plane
Attitude

Desired Height

Current Height

Desired Body
Plane Unit

Normal

Rotation

Angl e

Rotation

Unit Vector

Control Filter

Figure 4.9 Body Rates Module (1 of 2)

68

www.manaraa.com

Ordered Rate

Control Filter

Earth Coord
Translation

Rates

Body Euler

Angle Rates

Euler

Integration

Update

H Matrix

Figure 4.10 Body Rates Module (2 of 2)

69

www.manaraa.com

The deceleration module checks the output of the previous module. If the

period is below the set threshold, the vehicle is slowed. Each time the period falls

below the minimum value, longitudinal body velocity is cut ten percent and

lateral velocity and yaw rate are cut twenty percent. This slowing occurs in each

pass until the walking period rises to acceptable limits.

The leg phase module is used to update the movement phase of each leg.

The phase, expressed as a modulo one floating point number, indicates at what

point the leg is in its cycle of supporting, lifting off from the ground, being

transferred toward the desired foothold, and being placed onto the ground. The

relative phases of the legs in this simulation are set to move the legs in two. 180

degrees out of phase tripods.

The foot trajectory module uses the leg phase information and the period in

calculating the position of the feet relative to the body. The algorithm is shown

in the flow chart of Figure 4.11. The transfer time is the length of time allotted

for moving the foot from one foothold to the next. This determines the speed in

which the transfer is made.

The phase of the leg relative to the beginning of foot liftoff is referred to as

the transfer phase. When the leg's transfer phase is negative, corresponding to

being on the ground in a supporting role, the foot's relative position is determined

by the support trajectory module (Fig. 4.12). When the leg's transfer phase is

greater than zero but less than the liftoff-transfer transition value, the relative

foot position is returned by the liftoff trajectory module (Fig. 4.13). Likewise a

70

www.manaraa.com

Foot
Traj ectory

Transfer
Time

Leg # = 1

Figure 4.11 Foot Trajectory Module

71

www.manaraa.com

Transform Current
Foot Position

(Earth Coord
.

)

to Body Coord

.

Figure 4.12 Support Trajectory Module

72

www.manaraa.com

Set Desired
Foot Position

(vertical lift)

Remaining Time

in Lift Phase

Increment Foot
Position

(Earth Coord
.

)

Foot Position
= Desired
Position

Transform to

Body Coord

.

Figure 4.13 Lift Trajectory Module

73

www.manaraa.com

transfer phase value between the two transition point values yields a response

from the transfer trajectory module (Fig. 4.14 and 4.15). and a phase value

greater than the transfer-placement transition value yields a relative foot position

calculation from the placement trajectory module (Fig. 4.16).

The foothold selection algorithms contained in the transfer trajectory module

are discussed in section III.C.3. Note that within this module the desired end foot

position is treated differently in the follow-the-leader and forward wave gait

modes. The forward wave gait, with its high degree of maneuverability, has a

considerable greater probability that the projected ideal position toward the end

of the transfer phase will be much different from that at the start. Therefore the

desired foot position in the case of the forward wave gait is updated on each pass.

In the follow-the-leader gait case it is only calculated during the first time through

the the module.

The results of the calculation phase are the position and orientation of the

body and the relative position of each of the feet. These values are used, with the

inverse kinematic relations derived in section III.E.4. in the display phase to

obtain the rotation angles and translation distances required to position the

ASV's component parts.

74

www.manaraa.com

Relative Foot
Velocity at
Center of

Working Volume

Time to Reach
Working Volume

Limits

Desired Foot
Position

(Body Coord
.

)

Transform to

Earth Coord

.

Trans
Traj ect

Record Current

Foothold

Use

Old
Foothold

Find
New

Foothold

O
Desired Position

Selected Foothold

O

Figure 4.14 Transfer Trajectory Module (1 or 2)

75

www.manaraa.com

Remaining Time
in Trans . Phase

Increment Foot
Position

(Earth Coord.)

Transform to

Body Coord

.

Foot Position
= Desired
Position

Figure 4.15 Transfer Trajectory Module (2 of 2)

76

www.manaraa.com

Set Desired
Foot Position

(vertical drop)

Remaining Time

in Place Phase

Increment Foot
Position

(Earth Coord.

)

Foot Position
= Desired
Position

Transform to

Body Coord

.

Figure 4.16 Placement Trajectory Module

77

www.manaraa.com

The ASV object lists are then edited and the updated parameters inserted

into their corresponding rotation and translation commands. Once this is

completed, the display calls are made for the background, the terrain object and

then the properly ordered ASV object. Swapping display buffers completes the

loop.

The ASV simulation program presented here consists of fifteen separate files

linked, together with the graphics, math, and standard input-output libraries,

using the UNIX make utility. The program files and Makefile listings are

presented in the appendix. The routines were created in a modular fashion for

ease of development and testing and to assist in future program changes.

Constants are grouped into a single header file walk.h, for convenient reference

and modification.

E. SUMMARY

This chapter describes the ASV simulation program. The first section is a

guide for the operation of the program. It details the use of the menu system and

the operator controls. The following section discusses the display of graphics on

the IRIS-2400. The final section covers the organization and flow of the main

routine and its modules.

78

www.manaraa.com

V. SIMULATION PERFORMANCE

This chapter provides a brief review of the performance of the ASV

simulation program. The review is largely subjective and is based on the author's

experience with the operation of the simulation.

A. MODELING FIDELITY

The image of the vehicle on the screen appears to be a reasonable likeness of

the actual ASV. This is believed, to a great extent, to be due to the proper

scaling of dimensions of component parts, based on available blueprints of the

ASV. Details such as the leg hydraulic actuator housings and the optical

scanning radar, mounted on the cab of the vehicle, add to the visual effect. The

color scheme of the simulation vehicle has been altered to enhance the visibility of

the vehicle and its parts.

The walking motion of the model is very similar to that of the real vehicle.

This observation is based on viewing of videotapes produced at the Ohio State

University. A notable difference is that the simulation model is perceived to

operate at a much slower speed. A simulation time increment of 1/lOOth of a

second yields a display time to real time speed ratio of 1:30. Operating the

simulation with a simulation time increment much greater than 1/lOOth of a

second to compensate for this causes problems related to the optimum period and

79

www.manaraa.com

leg phase modules of the program. This leads to gross errors in the foot trajectory

planning algorithms.

B. FORWARD WAVE TRIPOD GAIT

Driving in the forward wave tripod gait mode is a very simple task. Although

a three-axis joystick would be prefered. the mouse-driven sliding bar control is

easy to use and effective. Switching between control bars for forward, lateral, or

rotational control can be accomplished with reasonable ease.

The externa! vantage point of the vehicle causes very little problem for

maneuvering the vehicle. This may change as the model's speed increases and

obstacles are introduced into the environment.

Overall, maneuverability of the ASV in the forward wave tripod gait mode is

clearly demonstrated with this model.

C. FOLLOW-THE-LEADER TRIPOD GAIT

The follow-the-leader tripod gait appears to work especially well for forward,

straight-line locomotion. Turning, however, is extremely restricted. Preliminary

investigations indicate a minimum turning radius of 18 times the body length,

using the constrained working volumes depicted in Figure 2.4. This is far greater

than expected. An estimated envelope for turning, based on initial simulation

trials, is shown in Figure 5.1. .Steering commands falling outside of this envelope

result in faults within the foot trajectory planning algorithms. These faults

80

www.manaraa.com

Speed
(cm/sec)

70

60

50

40

30

20

10

0.0

1 1

0.05 0.10 0.15 0.20

Angle (radians)

Figure 5.1 Steering Envelope using

Constrained Working Volume

81

www.manaraa.com

usually occur within the first four degrees of the turn attempt. Decreasing the

display time interval extends the maximum magnitude of the command envelope,

but only marginally improves the permitted relative direction command input.

The shape of the steering envelope is rather unexpected, and as of yet.

unexplained. Factors likely to have the greatest influence on the envelope are the

geometry of the leg's constrained working volume and the implementation of the

optimum period and foot trajectory planning algorithms.

Expanding the constrained working volume to the full working volume has a

remarkable effect on the maneuverability of the vehicle, while operating in the

follow-the-leader gait mode. By doing so, the minimum turning radius improves

to approximately five times the body length. This indicates a great potential

advantage in utilizing dynamic stability algorithms for future gaits.

Overall the follow-the-leader gait and tractor-trailer steering appear to be

successful for level, relatively obstruction-free terrain. Further research is needed

to determine the nature of the limitations and the means to expand the vehicle's

maneuverability while operating in this mode.

82

www.manaraa.com

VI. SUMMARY AND CONCLUSIONS

In this thesis a tripod follow-the-leader gait class is introduced for use by six-

legged walking vehicles. The class represents an extension of previously defined

follow-the-leader gaits and should prove useful for legged vehicles traveling in

rough or treacherous terrain conditions.

A new style of steering is also developed for follow-the-leader gaits. This

steering mode exhibits a general response similar to that found in steering a

wheeled tractor-trailer vehicle. With this mode, the driver is concerned only with

specifying the velocity of the front of the vehicle. The algorithm ensures that the

body of the vehicle follows along the path of the front.

An improved simulation model constructed to study the gait and steering

algorithms is also presented in this thesis. The vehicle selected as a physical

reference for the model is the Adaptive Suspension Vehicle (ASV). which is

currently undergoing testing and development at the Ohio State University. The

model developed is intended as a general tool for analyzing a variety of walking

control algorithms for legged vehicles.

83

www.manaraa.com

A. RESEARCH CONTRIBUTIONS

Previous research on follow-the-leader gaits [Ref. 3], has concentrated on gaits

that are temporally oriented. Since footholds are used by the following legs

immediately after being abandoned by the lead leg. this produces a creeping

motion with alternating leg and body movement.

Extending the class of follow-the-leader gaits into the spatial domain relieves

the requirement of immediately utilizing a foothold as soon as it is abandoned.

This gives a greater degree of freedom to leg movement and allows the possibility

of smooth, continuous body motion with shorter leg stroke.

The nature of a follow-the-leader gait greatly constrains the maneuverability

of the walking vehicle. The vertical projection of the vehicle's center of gravity is

required to fall within the support pattern of the legs and is therefore confined by

the history of footholds produced by the lead legs. The similarity of this problem

to that of a trailer pulled by a tractor cab has inspired the adoption of the term

"tractor-trailer" steering. With tractor-trailer style steering, the driver controls

the path of the front of the vehicle. As long as the driver does not turn too

sharply (possibly causing a wheeled tractor-trailer to jack-knife), the vehicle's

body follows along this path.

The selection of footholds for the leading legs is based on projecting the

relative heading vector provided by the operator. The location of recently

abandoned footholds is retained within the control algorithm for use by the

middle and rear legs.

84

www.manaraa.com

The simulation presented in this study models the kinematics of the ASV.

The model incorporates many of the simulation features presented by Lee [Ref. 4],

including omnidirectional control, automatic body altitude and attitude

regulation, leg motion planning, body deceleration, and filters between the control

inputs and reaction which provides the operator with the "feel" of vehicle

dynamics. A simplified variation of constrained working volumes is also used.

The simulation program has a modular design which creates a flexible

environment for studying various gaits and control algorithms. The program as

currently configured has two modes of operation. The first features a forward

wave tripod gait with three-axis control for steering in body coordinates. The

second mode utilizes the follow-the-leader tripod gait and two-axis control

tractor-trailer style steering, developed in this study. The program's displays and

controls are operated with a mouse-driven menu package using a single mouse

button.

The graphics presentation is greatly improved over Lee's monochrome line-

drawing representation. Three-dimensional, solid body, color graphics are made

possible through the implementation of the model on the special purpose software

and hardware of the IRIS-2400 system. This provides a notable enhancement of

realism for the vehicle simulation.

85

www.manaraa.com

B. RESEARCH EXTENSIONS

It has become clear, through the work of developing this study, that there are

many directions in which future research could be pursued. Four major areas to

be considered for extension are: quantitative measurement of the FTL tripod gait

performance, improvement of program features, improvement of display speed,

and expansion of upper level control algorithms using artificial intelligence.

Developing performance criteria for the simulated ASV is critical if one is to

effectively use the program as an aid for developing and evaluating walking

algorithms for the actual machine. Initial research might well concentrate on

measuring turning radii, steering reaction times, stability margins and basic

parameters of mobility.

As with any simulation model, there are many desired features which could

be added to enhance realism. Perhaps the most important improvement for this

type of mobile vehicle would be the inclusion of rough or uneven terrain into the

model. Provisions were made in the development of this model for that

eventuality. A few new algorithms, for functions such as estimating the support

plane beneath the vehicle and adjusting the constrained working volume to

conform to the terrain slope, will need to be written. It should be possible to

follow the work of Lee [Ref. 4], at least initially, in improving the simulation in

This direction.

Because the ASV is designed for rough terrain locomotion, developing a good

foothold search algorithm is important. In addition, the inclusion of foothold

86

www.manaraa.com

search into the simulation model would enable the FTL gait to be better

evaluated with respect to other types of gaits in various terrain conditions. This

would quantify the advantages of reduced foothold probing requirements for the

FTL gait.

This simulation could also be used to further develop steering mechanisms for

the ASV. Most notably, the algorithm for the tractor-trailer style steering uses a

simple method for body positioning based on the centroid of the established

footholds. A different method for body steering which minimizes the maximum

leg excursions might improve the vehicle's turning radius.

Dynamic modeling and supplementing the model's kinematics would greatly

improve the realism of vehicle movement. Moreover, it should also notably

increase mobility, as the vehicle would be free to utilize its leg's full working

volumes. This should also lead towards the development of a great number of

new gaits, which are dynamically, but not statically, stable.

Graphics techniques can be improved to enhance the realism of the displayed

image. Features such as shading, depth-cueing, reflectivity of surfaces, terrain

definition, and increased vehicle detail are all possible using current state-of-the-

art techniques. Higher resolution monitors and an enlarged number of bit planes

in the display hardware are also highly desirable.

Adding additional features to the model has the decided disadvantage of

requiring more cpu time for the simulation. As the program now exists, the

simulated vehicle moves and reacts markedly slower than the actual vehicle.

87

www.manaraa.com

There are. however, ways to improve the display time for the model. The prime

means is of course to upgrade the hardware, using newly developed and more

capable machines. The code may also be streamlined for efficiency. Possibly

several of the interactive features could be reduced or eliminated.

Another possibility for improving display time is the replacement of the

integration routines within the body kinematics section of the program with an

incremental homogeneous transformation matrix technique used by Lee [Ref. 4].

Integration is used here because of the simplicity of the technique and the

author's familiarity with the IRIS-2400 special hardware commands for rotation

and translation. It may be that the homogeneous transformation matrix could

also be used directly with the special hardware to provide the full transformation

with fewer trigonometric computations. This possibility has not been investigated

by the author.

An interesting avenue of research to explore is to automate the upper levels of

the control hierarchy. It may be possible to use an expert system shell running on

a special purpose LISP machine to provide driving commands to this simulation.

As of this writing, efforts are underway by others to establish communications

between the IRIS-2400 system and a Symbolics 3675 LISP machine.

Extensions to the work presented in this thesis are possible and will likely

prove very fruitful. It is hoped that this line of research will lead to more efficient

and practical gaits and control algorithms for legged walking vehicles in rough

terrain.

88

www.manaraa.com

LIST OF REFERENCES

1. Anon.. Logistical Vehicle Off- Road Mobility, Project TCCO 62-5, U.S. Army
Transportation Combat Developments Agency. Fort Eustis, VA, Febuary

1967.

2. Bekker, M. G., Introduction to Terrain- Vehicle Systems, Ann Arbor, MI.

University of Michigan Press. 1969.

3. Ozguner. F.. Tsai, S.J., and McGhee. R.B.. "An Approach to the Use of

Terrain-Preview Information in Rough Terrain Locomotion by a Hexapod

Walking Machine." The International Journal of Robotics Research. Vol. 3.

No. 2, Summer 1984. pp. 134-146.

4. Lee, W.J., A Computer Simulation Study of Omnidirectional Supervisory

Control for Rough-Terrain Locomotion by a Multilegged Robot Vehicle. Ph.D.

dissertation. The Ohio State University, Columbus, Ohio. March 1984.

5. McGhee, Robert B.. "Vehicular Legged Locomotion." Advances in

Automation and Robotics, edited by G.N. Saridis, Jai Press.. 1985. pp. 259-

284.

6. Hirose, S.. "A Study of Design and Control of a Quadruped Walking

Vehicle," The International Journal of Robotics Research. Vol. 3. No. 2.

Summer 1984. pp. 113-133.

7. Raibert, M.H., Legged Robots that Balance. The MIT Press. Cambridge, MA,
1986.

8. Russell, Jr.. M.. "ODEX I: The First Functionoid," Robotics Age, Vol. 5.

No. 5, September 1983, pp. 12-18.

9. Anon., Annual Report, Odetics, Inc., Corporate Headquarters. 1515 S.

Manchester Ave., Anaheim, CA, 92802-2907, March 1986.

10. Waldron. K.J., and McGhee, R.B., "The Adaptive Suspension Vehicle,"

IEEE Control Systems Magazine, December 1986. pp. 7-12.

89

www.manaraa.com

11. McGhee. R.B.. and Jain. A.K.. "Some Properties of Regularly Realizable

Gait Matricies," Mathematical Biosciences. Vol. 13. No. 1. Feburary 1972.

pp. 179-193.

12. McGhee. R. B.. "Some Finite State Aspects of Legged Locomotion."

Mathematical Biosciences, Vol. 2, No. 1. 1968. pp. 67-84.

13. Tsai. S.J.. A Experimental Study of a Binocular Vision System for Rough-

Terrain Locomotion of a Hexapod Walking Robot, Ph.D. dissertation, The
Ohio State L'niversity, Columbus, Ohio, March 1983.

14. Tomovic. R.. "A General Theoretical Model of Creeping Displacement,"

Cybernetica, Vol. 4, No. 2, 1961, pp. 98-107.

15. Waldron. K.J.. "Mobility and Controlability Characteristics of Mobile

Robotic Platforms." Proceeding on the 1985 IEEE International Conference

on Robotics and Automation. March 25-28. 1985. St. Louis. MO. pp. 237-243.

16. Moravec. H. P.. "The Stanford Cart and the CMU Rover," Proceedings of

the IEEE, July 1983. pp. 872-884.

17. McGhee. R. B.. and Iswandhi. G. I., "Adaptive Locomotion of a

Multileggged Robot over Rough Terrain." IEEE Transactions on Systems.

Man. and Cybernetics. SMC-9 (4), 1979, pp. 176-182.

18. Orin. D. E.. "Supervisory Control of a Multilegged Robot," The

International Journal of Robotics Research, Vol. 1, No. 1, Spring 1982, pp.

79-90.

19. Frank, A. A., and McGhee, R.B., "Some Considerations Relating to the

Design of Autopilots for Legged Vehicles," Journal of Terramechanics, Vol.

6. No. 1. 1969, pp. 23-35.

20. Raibert, M.H., and Sutherland. I.E.. "Machines that Walk," Scientific

American. Vol. 248. No. 2. January 1983, pp. 44-53.

21. Messuri. D.A.. and Klein. C.A.. "Automatic Body Regulation for

Maintaining Stability of a Legged Vehicle During Rough-Terrain

Locomotion." IEEE Journal of Robotics and Automation, Vol. RA-1. No. 3,

September 1985, pp. 132-141.

90

www.manaraa.com

22. Kwak. S.H.. A Computer Simulation Study of a Free Gait Motion

Coordination Algorithm for Rough-Terrain Locomotion by a Hexapod

Walking Machine, Ph.D. dissertation. The Ohio State University, Columbus.

Ohio. August 1986.

23. IRIS User's Guide, Silicon Graphics, Inc., Mountain View, CA. 1986.

24. Song. M.S., Lee, J.K., and Waldron, K.J., "Motion Study of Two- and

Three-Dimensional Pantograph Mechanisms." Procedings of 9th Applied

Mechanisms Conference. Kansas City, MO, October 1985. Sess. III.A, Paper

I.

25. Lee. C.S.G., "On the Robotic Manipulator Control." Advances in

Automation and Robotics, edited by G.N. Saridis, Jai Press., 1985. pp. 21-63.

91

www.manaraa.com

APPENDIX

PROGRAM LISTING

^*^ + **X*X***********x*^TX*x**3C3ca>:»:**T*:*x** + *:*3C**ai:*;****

This program is written for the iris-2400

walk.c

This is the main program for the simulation

Relle Lyman 04 May 1987

include "gl.h"

if include "device. h"

include "walk.h"

^include <stdio.h

^include < math h

main(

)

{

Object machineobject 4 leg 7 4 .textobj,vertextobj ,thighobj[7'[2][4|,

actuatorobj 7 [2][4],shinobj 7 2 4 . walker 4j,groundobject;

* NOTE: this program uses only elements 1-6 of arrays and vectors.

Legs are numbered to remain consistent with original research . */

Tag transrot tag 4,tr end tag 4 '.. legmovetag 7 J4 .

actmovetag 7 2 4 bodytagl[4 l

,

thighmovetag 7 2 4 .shinmovetag 7][2][4j;

Colorindex wrnask :

int i.j.k.n.

program status. /* desired status of program: RUN, HALT or RESET *

selected gait. -"" indicates which tripod gait is to be used *
'

slow flag. /* flag indicating deceleration is needed */

warning. * flag indicating supporting leg is outside of working volume */

leg statusj7j; * status of leg (supporting, liftoff, transfer, placement) */

static float

hx[7]= {O.155..155.,0.,0.,-155.,-155.}, /* Leg attachment points */

hy|7j= {0,50. ,-50. ,50. ,-50. .50. ,-50.}.

hz[7j= {0.23. ,23. ,23., 23. .23. ,23.},

14 7 = {0.L4.-L4.L4.-L4.L4.-L4}:

static Angle theta 7i = {0,0.0,0,0.0.0}. /* Leg component angles
*

alpha 7j = { 364, 364, 364, 364, 364 ,-364.-364}.

gamma(7] = {317, 317, 3 17, 31 7. 3 17. -317. -3 17}:

92

www.manaraa.com

ilk.c
*

/

float temp. tempi. temp2. tempo, top, bottom, /'* Temporary variables */

alpharad 7 .
/* Leg component angles in radians */

thetarad.

legcoord x 7
, /* Foot position in leg coordinates */

legcoord y[7j,

legcoord z[7],

azimuth, elev, roll, /* Body Euler angles (rads) */

ordered vel mag, /* Ordered velocity of the cockpit (magnitude) */

ordered vel dir, /* Ordered velocity of the cockpit (direction) */

dlj7|, /* Joint variables */

d2[7],

knee[7][2;. /* Relative position of knee */

foot[7i [2] , /* Relative position of foot */

h|4][4], /* Homogeneous transformation matrix */

invh(4][4], /* Inverse homogeneous transformation matrix */

legphase[7i, /* Phase of individual legs */

rel legphase(7j, /* Phase of individual legs relative to leg one*/

period, /* Period of leg cycle *
j

min period. /* Minimum allowed period * '

tx,ty.tz: /* Earth coordinates of body position */

vector rot rate. '* Body rotation rates */

trans rate. /* Body translation rates * /

ordered rate. * Ordered lateral and longitudinal translation and yaw rates */

footpos[7j, /* Position of foot in earth coordinates */

b footpos|7], /* Position of foot in body coordinates */

fh'7], /* selected footholds (earth coordinates) */

oldfhi7
.; /* old selected footholds (earth coordinates) */

work vol cwv(7]; /* Constrained working volumes */

plane spe; /* Estimated support plane */

/* Initialize the IRIS graphics */

ginit
(

) ;

/* standard IRIS graphics initialization */

doublebuffer() ; /* double buffering mode */

gconfig() ;

* configure the IRIS (use the above commands */

wmask= (l<<getplanes())-l ; /* enable all the bit planes for writing */

/* set to 2**(getplanes())minus one */

/* all bit planes on */

writemask(wmask) ;

backface(TRUE); /* set backface polygon removal on */

93

www.manaraa.com

vvalk.c

qdevice(MlDDLEMOLSE); * set up the queue for the menu */

tie(MIDDLEMOl'SE.MOUSEX,MOUSEY):

mapcolor(LTYELLO\V. 225. 225.0); * create new colors */

mapcolor(WHITEl.230,230,230):

viewport(410, 1023, 0,767) ;

/* set world view *

perspective(600. (614. 0/768). 0.0, 1023.0) :

* make the ground *

makeground(<Lr groundobject);

/* make the robot
x

7

makewalker(machineobject.dl.d2,thet a, knee.gamma. alpha. transrot tag.

tr end tag. walker. leg. thighobj.actuatorobj.shinobj,

legmovetag.thighmovetag.actmovetag.shinmovetag.tx.ty.tz.roll.

elev.azimut h.hx.hy,hz,l4) ;

'* Initialize the ASY walking routine parameters. */

init ialize(h.invh.<fcrot rate.&trans rate, bordered rate.&spe.&'period.

leg status. legphase.rel legphase, footpos.b footpos,cwv.fh.

oldfh.&selected gait, bordered vel mag.bordered vel dir.

<y. min period, &: program st at us, &:tx,&:ty,&:tz.&: roll. &elev.& azimuth);

while(TRl E) '* Main program loop
*

{

* Input the driver's commands. */

driver commandf&ordered rate.&rot rate.&trans rate.«L'program status,

b foot pos.<t period, alpha,gamm a, thet a. tslow fl ag, &• roll, &e lev,

&azimuth.&:tx.&ty.&tz. bordered vel mag. bordered vel dir.fh.

(^selected gait);

if (program status == HALT)

{

/* Quit program. */

break;

}

if (program status == RESET)

{

Reinitialize the ASV walking parameters. */

initialize(h.invh.&Tot rate.&trans rate, bordered rate.&spe.&period,

leg status. legphase.rel legphase, footpos,b footpos,cwv.fh.

oldfh.&selected gait.irordered vel mag, bordered vel dir.

& min period, &: program stat us, &tx.&ty,&tz,&roll,&elev,&; azimuth);

}

94

www.manaraa.com

ilk.

/* Calculate the estimated support plane. "

/

j* Future revision needed for rough terrain. */

support plane(&spe);

/* Calculate the body rotation and translation rates. */

body rates(&rot rate.&ztrans rate. &spe,h,invh.bordered rate,

&tx,&ty,&tz,&roll,&elev.& azimuth):

/* Calculate the constrained working volume for the legs. */

con work vol(cwv,b footpos,leg status. irwarning);

/* Calculate the optimal period for walking. */

optimal periodflegphase.b footpos.&rot rate.&trans rate,cwv,

leg status. &:period);

t

* Decelerate if necessary.
*

decelerate(&:trans rate.&rot rate.&period.&slow flag.&rmin period);

* Calculate the phase of each leg. */

leg phaseflegphase.rel legphase.&period);

/* Calculate the new position for each foot. */

foot trajectory(legphase.&:period,leg status, footpos,b footpos.fh.oldfh,

invh,h.cwv,&trans rate.&rot rate.&selected gait);

,

* Display the ASV on the screen. */

* This section computes the new parameters to position the legs

relative to the body, based on the relative position of the feet.

It then check to ensure that no actuator positions exceed the limits. */

/* Convert foot position to leg coordinates. */

for(i=l; i<5; i+ —

)

{

legcoord_x[i) = b_footpos;i].x - hx[ij;

legcoord y[i] = b footpos'ij.y - hy[ij;

legcoord zjij = b footpos[i .z - hzii];

}

/ The foot position of the rear legs are changed to compensate for

the 180 degree rotation used in the leg construction routine. */

for(i = 5; i<7; L-f- —

)

{

legcoord xlij = hxi - b footposji |.x;

legcoord _y[i] = b footposlij.y - hy|i];

legcoord z(i = b footposii .z - hz.ij;

}

95

www.manaraa.com

I* walk.c *

for(i- 1: i<7 : i
)

<

generate required parameters dl,d2, theta */

d2 i = legcoord x[i '5.0;

temp= legcoord y[i * legcoord y[i]:

temp2= legcoord zji *legcoord z[i];

dl i = -(5.0*L3-sqrt(temp+temp2-L4*L4))/4.0;

templ=5.0*L3-f-4.0*dl[i] ;

switch (i)

{

case 1:

case 3:

case 5: tempS = templ*legcoord y i] + L4*legcoord z i
;

break:

case 2:

case 4:

case 6: tempS = templ*Iegcoord yiil - L4*legcoord z[i|;

}

thetarad = asin(temp3 (templ*templ 4- L4*L4));

thetai = thetarad * 573 — 0.5:

}

for(i= l ;i<7 ; i++) /* prepare parameters for graphics */

{
/* update on all 6 legs */

temp = L3->-dl i ;

tempi = d2ii *d2ii] + temp*temp:

temp2 = (Ll*Ll - L6*L6 - tempi)/ (2. 0*Ll*sqrt (tempi));

alpharad i =((PI 2)-atan(d2 i . temp)-acos(temp2)) ;

* Note: One half of a degree has been added to all angles
*

alpha:i=(alpharad i *573^.5):

knee i;j0l = (L2*cos(alpharad[i)^.5); /* relative to baseplate */

knee i][l]= -((L2*sin(alpharad ii)- dl[ij)+0.5); /* relative to baseplate *
'

foot[i][0j= (5.0*d2[i]+.5); /* relative to baseplate */

foot[i][l]= -(5.0*L3 + 4.0*dl|i]-^.5)
;

/* relative to baseplate */

top=(kneeii' 0j-foot|ij[0);

bottom= (knee(i 1]-footji!|l|);

gamma i
— (atan(top ' bottom)*573+ .5) ;

96

www.manaraa.com

for (n = 0; n<4; n + ^) /* The walker is updated in each quadrant *
y

{

editobj(thighobj|i](Oj jnj)
;

/* edit each leg to new */

objreplacefthighmovetagjijjOJjn])
; ,

location

rotate(alphaji|,'Y')
;

closeobj() ;

editobj(thighobj[i][l|[n])
;

objreplace(thighmovetag[ij[lj[n])
;

translate(0.0.0.0,dl[i])
;

closeobjf)
;

editobj(actuatorobj[i][0][n])
;

objreplace(actmovetag[i;[Oj[n])
;

rotate(alpha[i],'Y')
;

closeobj()
;

editobjfactuatorobj i;ll]'nj)
;

objreplace(actmovetagji ; [li[nj)
;

translate(d2 i ,0.0,-L3) ;

closeobJO ;

editobj(shinobj!i]|Oj[nj) :

objreplace(shinmovetag[ij;Oj|n])
;

rotate(gamma!il,'Y') ;

closeobjf) ;

editobj(shinobj(i]|lJ(n])
;

objreplace(shinmovetag[i]!l][n])
;

translate((float)(knee[i]!0]),0.0,(float)knee[ij!l
) :

closeobjf)
;

editobjfleg i
'

[n]) ;

objreplaceflegmovetag i]jn])
;

rotate(theta i ,'X')
;

closeobjf)
;

} '* end quadrant loop */

}
/* end for leg loop i=l ... */

for (n=0; n<4; n+ +
)

{

editobj(machineobjectln))
;

objdeleteftransrot tag[nj,tr end tag!n):

objinsertftransrot tag[n]);

translate(tx,ty,tz):

rotateffint) (azimuth* 573), 'Z');

rotate ((int)(elev* 573),'Y');

rotate((int)(roll*573),'X');

closeobjf) ;

}
/* end of quadrant loop */

97

www.manaraa.com

walk.c

set up the background

color(BLUE):

clear();

* Keep the viewing relationship constant. */

perspective(600, (614.0/768), 0.0, 1023.0) ;

lookat(800.0-rtx,800.0+ty,550.0,tx,ty ,-50.0.1100);

'* CALL THE GROUND */

callobj(groundobject);

/* Display the ASV in the correct quadrant configuration

if (azimuth < 0.0)

{

{

azimuth += 2.0 * PI:

}

if (azimuth > 2.0 * PI)

{

azimuth -= 2.0 * PI;

}

if (azimuth < 0.25*PI)

{

callobjfmachineobject 0]):

}

if ((azimuth >= 0.25*PI)&.'&(azimuth < 0.75*PI))

{

callobjfmachineobject 3]);

}

if ((azimuth = 0.75*PI)&&(azimuth < 1.25*PI))

{

callobjfmachineobject 1 2]):

!

if ((azimuth : = 1.25*PI)&&(azimuth < 1.75*PI))

{

callobj(machineobject!lj):

}

if (azimuth >= 1.75*PI)

{

callobj(machineobject!0]);

swapbuffers() ;

}
* end of main program loop */

98

www.manaraa.com

* walk.c

* Clean up the screen. *

color(BLACK)
;

clear() ;

swapbuffers();

color(BLACK);

clear():

swapbuffers():

finishf) :

gexitj)
;

} /* END OF MAIN PROGRAM */

99

www.manaraa.com

This is the header file for the program walk.c.

walk.h

Relle Lyman
14 May 1987

^define BETA 0.5

^define DELTA TIME 0.010

^define TIME CONSTANT 1 0.1

f define TIME CONSTANT 2 0.25

^define TIME CONSTANT 3 0.5

^define FTL GAIT 1

^define FVVD WAVE GAIT 2

^define FORWARD 1

^define BACKWARD
^define END LIFT PHASE 0.2

#define BEGIN PLACE PHASE 0.8

-define SUPPORTING
^define LIFTOFF 1

#define TRANSFER FORWARD 2

^define PLACEMENT 3

^define ON 1

^define OFF
ftdefine LENGTH 310.0

#define HALFLENGTH 155.0

^define FOOTLIFTHEIGHT 40.0

^define LONG TIME 1000000

^define HO 160.0 /* Desired

#define OUTER LIMIT 6.08 /* cm/sec

^define INNER LIMIT 1.52 /* cm/sec

#define RUN
*=define HALT 1

^define RESET 2

^define NORMAL
idefine SLOW 1

^define PI 3.14159

^define UP 1

^define DOWN 2

^define IN 1

^define OUT
• define LTYELLOW 100

idefine WHITE1 107

^define TEXTCOLOR BLACK
^define NOHIGHLIGHT LTYELLOW

" The length between the forward

and aft hip joints */

* Half the length between the forward

and aft hip joints
*

(cm)*/(cm

/

*/

#define ACTIVEHIGHLIGHT RED
#define INACTIVEHIGHLIGHT YELLOW

100

www.manaraa.com

* walk.h *,

#define Ll 20.0

#define L2 102.0

^define L3 24.0

f define L4 32.0

#define L6 30.0

struct mag in xvz /* magnitude along x, y, and z axes */

{

float x,y,z;

};

typedef struct mag in xyz vector;

struct plane coefficients /* plane coefficients */

{

float a.b.c.d:

};

typedef struct plane coefficients plane;

tvpedef struct

{

float min.

max.

center:

} dimensions;

typedef struct
{"

dimensions x,

y-

z;

} work vol;

typedef struct

{

int Ieft,right,top,bottom,x0,y0.xl,yl,x2,y2;

char *text0.*textl.*text2;

} menubox;

101

www.manaraa.com

/xXXXXXXX*X**XXXX*X.XXXX±*:xxXXXX*X#.*Xx*x*XXXX->****x>***-****r**xx*XXXX

This is a function for the iris 2400 program walk.c.

in it .c

Relle Lyman 27 Apr 1987

itinclude "gl.h"

^include "device.h"

^include "walk.h"

init iahze(h.invh,rot rate. trans rate.ordered rate, spe, period. leg status,

legphase.rel legphase.footpos.b footpos.cwv,fh,oldfh. selected gait,

ordered vel mag.ordered vel dir, program status, tx,ty.tz. roll, elev. azimuth)

This function computes the body rotation and translation rates.
*

vector *rot rate. '* rotation rate */

*trans rate, * translation rate */

*ordered rate. * ordered x translation, y translation,

and z rotation rates */

fit 7 .

* selected footholds (earth coord.) */

oldfh 7 .

* old selected footholds (earth coord.) */

footpos;7 .

* position of the foot in earth coord.
*

b footpos 7 ;

* position of the foot in body coord. */

plane *spe; /* support plane in earth coord */'

work vol cwv 7 :
/* constrained working volume */

float h[4jj4 , * homogeneous transformation matrix *

invh[4 [4;, /* inverse of transformation matrix */

legphase 7!, /* phase of the phase */

rel legphase 7l, /* phase of the leg relative to leg one *

* period. /* body support period */

*tx,*ty,*tz, /* position of body in earth coordinates +/

*roll.*elev.*azimuth, /* body euler angles */

ordered vel mag. ' ordered velocity of the steering pt (magnitude)*

ordered vel dir: / ordered velocity of the steering pt (direction)*

int leg status|7|. /* status of the leg * '

*program status. * desired status of program */

^selected gait: /* type of tripod gait to be used *
'

{

int i.j;

Hoat modulus one(); /* modulus one function */

102

www.manaraa.com

/* init.c

/* initialize the transformation matrix *,

h|0 [0] = 1.0;

h|0 1 = 0.0;

h:0 2 = 0.0;

h(0 i o IH = 0.0;

hH [o] = 0.0;

hll [11
= 1.0;

hU [2]
= 0.0;

hjl
i o i

•> = 0.0;

h 2 [o] - 0.0;

h 2 ill = 0.0;

h[2
I

2
)

= 1.0;

h;2 = HO;

h 3 = 0.0;

h 3 ;lj = 0.0;

h 3 [2]
= 0.0:

h 3 3 1.0;

/
* initial height of the center of the body * /

/* initialize the inverse transformation matrix */

for (i=0; i<3; i++)

{

for(j=0;j<3;j + +
)

I

invh[i][j] = h[jj(i];

}

invh[3][i] = 0.0;

invh[i![3] = -(hf0](ij*h ; 0]l3] + h[l][i]*h(l][3i +
h[2j[i]*h[2][3):

/* initialize the body rotation and translation rates * /

rot rate->x = 0.0;

rot rate->y = 0.0:

rot rate->z = 0.0;

trans rate->x = 0.0

trans rate->y = 0.0

trans rate->z = 0.0

I* initialize the commanded body rates */

ordered rate->x = 0.0; '* translation */

ordered rate->y = 0.0; '* translation */

ordered rate->z = 0.0; /* rotation */

* period = LONG TIME;

selected gait = FWD WAVE GAIT;

103

www.manaraa.com

llllt.C

* initialize the relative leg phase

rel legphase; l: = 0.0;

rel legphasei2

rel Iegphasej3

rel legphase[4

rel legphase[5

rel legphase[6

= 0.5;

= BETA;
BETA-0.5;

- 2*BETA - 1.0;

= modulus one(2*BETA - 0.5]

/* initialize the leg status and phase */

for (i=l: i-7: i- •
)

{

leg statusli] = SUPPORTING;
legphase i = rel legphase i ;

initialize the constrained working volume for each leg

cwv 1
]

.x.min 95.0;

cwv 1 .x.max = 215.0;

cwv 1 .x. center = 155.0;

cw \ 1 .y.min = 60.0;

cwv 1 . \ max 131.0;

cwv 1 .y.center = 95.0;

cwv 1 .z.min -240.0;

cwv 1 .z.max - 80.0;

cwv 1 z. center = -160.0;

cwv 21 x.min 95.0;

cwv[2j .x.max = 215.0

cwv 2] .x. center = 155.0;

cwv 2 .y.min = -131.0;

cwv 2 .y.max = - 60.0;

cwv 2 .y.center = - 95.0;

cwv 2 .z.min = -240.0;

cwv 2 .z.max - 80.0;

cwv 2 .z. center -160.0;

CWV o .x.min = - 60.0:

CWV 3 .x.max 60.0;

cwv ."'. .x.center - 0.0;

cw\ ;; .y.min 60.0;

cwv 3 y.max = 131.0

cwv [3 .y.center = 95.0;

cwv ;

j
< .z.min = -240.0;

cwv|3 .z.max = - 80.0;

cw\ .". .z. center = -160.0;

104

www.manaraa.com

i n it c

CWVJ4; .x.min = - 60.0;

cwv;4; .x.max = 60.0:

cwv|4 .x. center = 0.0;

cwv|4' .y.min = -131.0;

cwv[4i .y.max = - 60.0;

cwv 4; .y. center = - 95.0;

cwv 4 .z.min = -240.0;

cwv[4J .z.max = - 80.0;

cwv 4j .z.center = -160.0;

cwv [5] x.min = -215.0;

cwv [5: .x.max = - 95.0;

cwv 5 .x. center = -155.0:

cwv|5i .y.min = 60.0;

cwv|5 .y.max = 131.0

cwv|5j .y. center = 95.0;

cwv 5 .z.min -240.0;

cwv|5 z.max = - 80.0;

cwv 5 .z. center = -160.0;

cwv[6j.x.min = -215.0;

cwv|6j.x.max = - 95.0;

cwv[6].x. center = -155.0;

cwv 6 .y.min = -131.0;

cwv6 y.max = - 60.0;

cwv 6i.y. center = - 95.0;

cwvj6!. z.min = -240.0;

cwv[6!.z.max = - 80.0;

cwv[6|.z. center = -160.0;

/* initialize the selected foothold positions
*

fh[l].x = cwv[l].x. center + LENGTH/12.0;
fh[2].x = cwv[2].x. center- LENGTH 12.0;

fh[S].x = cwv[3].x center - LENGTH 12.0;

fh 4!.x = cwv|4j.x. center + LENGTH 12.0;

fh[5].x = cwv[5j.x. center + LENGTH 12.0;

fh[6].x - cwv[6j.x. center- LENGTH/12.0;

for (i=l;i< 7;i — —

)

{

fhjij.y = cwv[ij.y. center;

fhlil.z = 0.0;

105

www.manaraa.com

mit.c

initialize the earth relative foot positions

for (i=l;i<7:H -
)

{

footposjij.x = fh[i].x;

footposji.y = fhlij.y;

footpos[i].z — fhli .z;

}

* initialize the old selected foothold positions
*

for (i=l:i<7;i- +
)

i

oldfh i .x = fhlii.x - LENGTH/3.0;
oldfh ij.y = cwvli v. center:

oldfhjij.z = 0.0;

}

i

* initialize the body relative foot positions
*

for (i=l;i<7;i+ +
)

{

b footpos[i].x = cwv i x. center;

b footpos[i].y = cwv ij.y. center;

b footpos|i].z = cwv i .z. center;

initialize the estimated support plane */

spe- a = 0.0;

spe-:>b = 0.0;

spe->c = 1.0:

spe->d = 0.0;

T
initialize the ordered velocity of the steering point */

^ordered vel mag — 0.0;

*ordered vel dir = 0.0;

initialize the body attitude and position */

'roll = 0.0;

*elev = 0.0;

'azimuth = 0.0;

*tx = 0.0;

*ty = 0.0;

*tz = HO;

initialize desired program status
*

* program status = RUN;

]
* end of initialize

106

www.manaraa.com

*:**x*:r***:r*********:K*****xx****************** A**********************

This is a function for the iris 2400 program walk.c.

driver.

c

Relle Lyman 13 May 1987
x***/

^include "gl.h"

^include "device h"

^include "walk.h"

* include <stdio.h>

#include <math.h>

menubox box[j = {

0.0. 0,0, 0,0. 0,0. 0.0. "not", "used", "here".

100, 200, 670.525, 120. 567. 120, 597. 120, 627, "G AIT"."W AVE","FWD",
200, 300, 670. 525. 220. 567. 220, 597, 220.627, "ATTITUDE","AND","ALTITUDE",
300,400,670,525.320.567,320,597,320.627," "."RESET"," ",

100, 200. 525, 380.120.422. 120. 452. 120. 482. "GAIT"." ","FTL",

200, 300, 525, 380, 220.422, 220.452, 220, 482, "REPORT"," "."STATUS",

300, 400, 525, 380.320.422. 320, 452, 320. 482,"PROGRAM"," "."EXIT",

100. 200. 31 0,230. 120. 250. 120, 270. 120. 290, "REVERSE"."FOR WARD"."TRANSLATE'
100. 200, 230, 150. 120. 170. 120, 190, 120. 210, "RIGHT". "LEFT", "TRANSLATE".
100. 200. 150. 70. 120. 90. 120. 110, 120. 130. "RIGHT". "LEFT","ROT ATE".

100.200.310.230.120.250.120.270.120.290." "." "." ",

100,200,230.150.120.170.120,190.120.210." "." "." ",

100,200,150.70.120,90,120.110,120,130," "." "." "}:

driver command(ordered rate. rot rate. trans rate. program status,

b footpos, period, alpha,gamma. theta.slow flag, roll, elev.

azimuth. tx.ty.tz.ordered vel mag. ordered vel dir.fh, selected gait)

/* This function inputs the driver's commands using a menu and

the mouse. *

vector *ordered rate, ; * ordered x translation, y translation, and z rotation rates */

rot rate. / actual rotation rate vector */

trans rate, / actual translation rate vector */'

b footpos[7
;

, / position of foot in body coordinates */

fh[7j; /* selected footholds (in earth coordinates) */

int *program status. /* desired status of the program RUN/HALT 'RESET */

selected gait. / desired tripod gait
*

*slow flag; / flag indicating deceleration is required */

float *period, /* body support period * '

*tx.*ty,*tz, /* body translation distance (Earth coord) */

* azimuth, *elev,*roll, /* body Euler angles *

ordered vel mag, / ordered cockpit velocity (magnitude) */

ordered vel dir: / ordered cockpit velocity (direction) */

107

www.manaraa.com

+
driver. c *,

Angle alpha 7 .

* thigh angle

gamma 7 .

* bhin angle
*

t hetai 7 :

* leg lateral angle

{

Device dummy. x.y;

static int buttonflag = UP, pick, potentialpick.mainmenupick,submenu, slidebar;

in t i

:

float barvalue;

static float time;

char str orx 100], str ory!l00!,str orzlOO],

str trx!l00],str_try'100j,str_rrz 100 ,str timejlOO];

pushmatrixf);

pushviewport();

viewport (0.500.0.767):

onho2(0. 0,500. 0.0. 0.767.0):

color(CYAN); '* screen background color
*

clear():

'* Display simulation time on top of screen

color(TEXTCOLOR);
time += DELTA TIME;
sprintffstr time, "simulation time ^c8.3f".time);

cmov-2i(l05.700);

charstr(str time):

if (qtest() == MIDDLEMOUSE) '* Button just pressed or released *

{

qread(i'dummy):

qread(&x);

qread(&y);

if (buttonflag — = DOWN) * Button was just released *

{

buttonflag = UP;

if (potentialpick == 0)

{

* No change */

}

108

www.manaraa.com

driver. c *

else if (potentialpick < 7) /* Main menu chosen *

{

mainmenupick = potentialpick;

pick = 0;

pick = potentialpick;

potentialpick = 0;

}

else /* submenu chosen */

{

pick = potentialpick; /* no change to main menu pick *

/

potentialpick = 0;

}

}

else /* Button was just pressed. */

{

buttonflag = DOWN;
}

} * end of qtest *
'

if (buttonflag DOWN) /* Find the box over which the

cursor lies for highlighting. */

{

x = getvaluator(MOUSEX);

y = getvaluator(MOUSEY);

potentialpick = 0;

for (i=l:i<7;i-i- +
) /* Check the main menu. */

{

if (x < boxiij. right && x > box[i .left &:&

y < boxlil.top && y > boxii. bottom)

{

potentialpick = i;

}

\

if (submenu -- 1) /* Check submenu #1. */

{

for (i=7;i<10:i++)

{

if (x < boxjij. right && x > box[i|.left &&
v < boxiij. top && y > boxjij. bottom)

{

potentialpick = i;

I

}

109

www.manaraa.com

driver.

c

if JMilmienu == 2) * Check submenu #1.

for (i 10;i< 13;i + +
)

1

if (x < box i .right &:& x > boxjij.left &;&

v < boxiii.top && v > boxiii. bottom)

{

potentialpick = i;

}

}

I

}

else /* button is up * /

{

potentialpick = 0;

\

'* Display the menu. */

for (i=l;i<7;i—

)

{

if (i == potentialpick)

{

color(ACTIVEHIGHLIGHT);

}

else if (i -= mainmenupick)

{

color(INACTIVEHIGHLIGHT);

}

else

\

color(NOHIGHLIGHT);
i

i

rectfifbox i .left, boxji]. bottom, box(i). right, box(ii.top);

color(TEXTCOLOR);
recti(box[i].left, boxjij. bottom, box'i). right, box:ij.top);

cmov'2i(boxji).x0,box[i].y0);

charstr(box[ij.textO);

cmov2i(boxiij.xl,box[ij.y 1);

charstr(box(ij.textl);

cmov2i(boxjij.x2,box[i].y2);

charstr(box|i|.text2):

\

110

www.manaraa.com

driver. c *

if (submenu - 1) /* Display submenu *1. */

{

for (i=7;i<10;i++)

I

if (i == potentialpick)

{

color(ACTIVEHIGHLIGHT);

else if (i == pick)

{

color(INACTIVEHIGHLIGHT);

}

else

{

color(NOHIGHLIGHT);

}

reotfifbox i .left, boxji.. bottom, box i .right, boxT.top)

color(TEXTCOLOR);

rectifbox i left. box!i!. bottom, box i right, boxiiitop);

cmov2i(box|i .xO,box!i;.yO):

charstr(box(ij.textO);

cmov2i(box!i;.xl,box|ij.yl);

charstr(box[ii.textl);

cmov 2i (box [i;.x2, boxji j.y2);

c h arsl r (box I i i . tex 1 2)

:

color(WHITE);
rectfi(200.70, 400,370);

color(BLACK);

recti(200.70,3O0.15O):

recti(300,70,400,150);

recti(200,150.300,230)

recti(300,150.400,230)

recti(200, 230, 300,310)

recti(300,230.400,310)

recti(200,310.300,370)

recti(300,310,400,370);

color(RED);

cmov2i(205,350);

charstr("ORDERED")
cmov2i(205,330);

charstr("RATE");

cmov2i(305.350);

charstrfACTUAL"):
cmov2i(305.330);

charstrC'RATE");

Draw LED gages. */

111

www.manaraa.com

driver.

c

Display the parameter values. *

sprintf(str orx,"%7.2P,ordered rate- >x);

spnntfjstr ory "%1 .2V

,

ordered rate- y);

sprintf(str orz." t,:

c7.2f". ordered rate- -z);

sprintf(str_trx,"%7.2P , .trans_rate->x);

sprintf(str try. "%7 .2r\ trans rate->y):

sprintf(str rrz,"%7.2P',rot rate- >z);

cmov2i(205.270);

charstr(str or.x):

cmov2i(205,190);

charstrfstr ory);

cmov2i(205.110);

charstrfstr orz):

cmov2i(305^270);

charstrfstr trx):

cmov2i(305
? 190);

charstrfstr try);

cmov2i(30.^.110);

charstrfstr rrz);

}

if (submenu —- 2) * Display submenu $2. */

{

for (i=10;i<13:i-i—

)

{

if (i == potentialpick)

{

color(ACTIVEHIGHLIGHT);

}

else if (i == pick)

{

color(INACTIVEHIGHLIGHT);

color(NOHIGHLIGHT);

}

rectfifbox i left, boxii .bottom, box ij. right, box i .top)

color(TEXTCOLOR);
recti(box!i].left, boxjij. bottom, box 1 right, boxii]. top);

cmov2i(box[i;.x0.box[i].yO);

charstr(box ij.textO);

cmov2i(box[ij.xl,box|ij.yl):

c h arstrf box ji]. text 1);

cmov2i(box[i].x2,box[i].y2);

charstr(boxi].text2);

}

112

www.manaraa.com

driver.

c

color(WHITE);

rectfi(200, 70,400, 370);

color(BLACK);

recti(200,70,300,150);

recti(300, 70,400,150);

recti(200, 150,300, 230);

recti(3()0. 150.400,230);

recti(200,230,300,310);

recti(300. 230.400.310);

recti(200. 310,300,370);

recti(300, 310.400,370);

color(RED):

cmov2i(205,350);

charstr("ORDERED"):

cmov2i(205,330);

charstr("ANGLE");

cmov2i(305,350);

charstr("ACTUAL");

cmov2i(305,330);

charstr("ANGLE");

Draw LED gages.

}

switch (pick)

{

case 1: submenu = 1;

'selected gait = FWD WAVE GAIT;

break;

case 2: submenu

break;

2;

case 3: submenu = 3;

*program status = RESET:
break;

case 4: submenu = 4;

joystickftrans rate, rot rate, ordered vel mag. ordered vel dir,&buttonflag)

steering conv(ordered rate,ordered vel mag. ordered vel dir,

azimuth. tx,ty,fh);

* selected gait = FTL GAIT;

break;

113

www.manaraa.com

driver. c

case 5: submenu = 5;

status report(ordered rate. trans rate, rot rate,

b footpos.period.alpha,gamma.theta.

slow flag,roll.elev,azimuth,lx.t\ .

tz);

break;

case 6: * exit *
/

'program status HALT;
break;

case 7; bar(-200.0. 200. O.&slidebar.&barvalue, trans rate->x)

if (slidebar == IN)

{

ordered rate->x = barvalue;

}

break;

case 8: bar(- 100.0.100 0,&slidebar.<Lbarvalue, trans rate->y)

if (slidebar = = IN)

{

ordered rate->y = barvalue;

break;

case 9: bar(-1.0,l .0.&.'slidebar,&'barvalue,rot rate->z);

if (slidebar - = IN)

i

ordered rate->z — barvalue;

}

break;

case 10; /* Future expansion *

break;

case 11: '* Future expansion */

break:

case 12: '* Future expansion */

break;

default: color(BLACK):

}

popviewport));

popmatrix():

}
* end of driver command */

114

www.manaraa.com

* driver. c *

bar(minval. maxval.slidebar,barvalue, actualvalue)

float minval. maxval.*barvalue,actualvalue;

int "slidebar:

{

register i;

char str 20];

int x.y;

static int barlevel;

/* Draw the sliding bar. *,

cursoff();

color(BLACK);

rectfi(9,69.90.690):

color(RED);

recti(10.70.30.670);

for (i=0;i<5;i-i—

)

{

move2i(30.70 + i*150):

draw2i(40,70 + i* 150);

cmov2i(34.73 - 1*150);

sprintffstr. "%6. IP 1

,minval + i*(maxval-minval)/4.0);

charstr(str);

}

curson();

/* Check the location of the cursor. If it is inside the

sliding bar, then calculate the value for its position. */

x = getvaluator(MOUSEX):

y = getvaluatorfMOl'SEY);

if (10 < x && x < SO && 70 < y && y < 670)

{

barlevel = y;

*slidebar = IN;

barvalue = minval + (maxval - minval)(y - 70)/600.0;

}

else

{

*slidebar - OUT;

}

/* Draw the bar showing the actual level. */

color(RED);

rectff 15. 0,70. 0.25.0, (370. 0+600.0*actualvalue/(maxval-minval))):

/* Draw the bar showing the ordered value. */

color(YELLOW);
rectifll, 70, 29, barlevel);

} /* end of bar */

115

www.manaraa.com

joystick(trans rate. rot rate. ordered vel mag. ordered vel dir.buttonflag)

vector *trans rate. * translation rates of the center of gravity in body coordinates *

*rot rate; * body Euler angle rotation rates */

float 'ordered vel mag, /
* ordered velocity of cockpit (magnitude) *

"ordered vel dir; /* ordered velocity of cockpit (direction) */

int *buttonflag; /* indicator for middle mouse button */

{

int x.y.i;

float vx.vy, /* velocity of cockpit in body coordinates */

magn.dir: * magnitude and direction of cockpit velocity vector */

* Display the steering box. *

color(BLUE);

recti(100.80,400,380):

* Display the grid */

for (i=l;i<15;i++)

{

move2(90.0+i*20. 0,80.0):

draw2(90 0-i*20. 0.380.0);

}

for (i=l;i< 15;i+ +
)

{

move2(100.0,80.0+i*20.0);

draw2(400.0,80.0+i*20.0);

}

* Display instructions. */

cmov2i(110,65);

charstr("Hold the middle button down");

cmov2i(110,50);

charstr("to control the joystick");

/* Display the current velocity of the cockpit. */

vx = trans rate->x;

vy = rot_rate->z * HALFLENGTH + trans rate->y;

magn = sqrt(vx*vx -~ vy*vy);

dir = atan2(vy,vx);

if (vx - - 0.0)

{

dir - 0.0;

}

linewidth(5);

color(YELLOW);
move2(250. 0,80.0);

116

www.manaraa.com

* driver.

c

if (vx == 0.0)

{

dir - 0.0;

>

linewidth(5):

color(YELLOW);
move2(250. 0,80.0);

draw 2((250. 0-400. 0*dir). (80. 0+magn*3.0));

/* Check the location of the cursor. */

x = getvaluator(MOUSEX);

y = getvaluator(MOUSEY);

if (*buttonflag == DOWN)
{

if (100 < x && x < 400 && 80 < v &&: v < 380)

{

* ordered vel mag = (y-80) '3.0;

* ordered _vel_dir = (250-x)/ 400.0;

}

i

I

* Display the ordered velocity of the cockpit. */

linewidth(S):

color(RED);

move2(250. 0.80.0);

draw2((250.0 - 400 * "ordered vel dir), (80.0 + *ordered vel mag * 3.0));

linewidt h(1);

}
/* end of joystick */

117

www.manaraa.com

:»*tr.)t»**KTX*X**TJ'tM"X>T'"tX!cJ"K»x!«X**X):s*»l*t

This is a function for the iris2400 program walk.c.

steering, c

Relle Lyman 26 Mar 1987

= mrlude "gl.h"

= include "device. h"

include "walk.h"

£ include <stdio.h>

^include • math.h

steering conv(ordered rate, ordered vel mag. ordered vel dir, azimuth. tx,ty.fh)

This function calculates converts ordered head velocity to

ordered body translation and rotation rates. */

float ^ordered vel mag. * ordered velocity of the cockpit (magnitude) */

*ordered vel dir. * ordered velocity of the cockpit (direction) */

'azimuth. ' body azimuth angle (radians)

'i\. "ty: ' current position of the body's center of

gravity (in earth coordinates) */

vector *ordered rate. * ordered forward and lateral translation

rates and azimuth angle rate *

fh 7 ;

* selected foothold (in earth coordinates) */

float hx.hy, * current head (cockpit) position (earth coord.)*/

dhx.dhy. * desired head position (earth coord.)
* ;

fhcen x.fhcen y, .,

* foothold centroid (earth coord.) */

dcgx.dcgy, /* desired center of gravity (earth coord.) */

dazimuth. I* desired azimuth angle (earth coord.) */

diffazm; f* difference between desired and current azimuth */

vector desired rate; /* desired earth translation rates and azimuth

angle rate
*

118

www.manaraa.com

steering conv

'* Note: This module uses a level terrain assumption. */'

/* Calculate current head position (earth coordinates),

hx = *tx - HALFLENGTH " cos(*azimuth);

hy = *ty - HALFLENGTH * sin("azimuth):

/* Calculate the desired head position (earth coord). */

dhx = hx -j- DELTA TIME * "ordered vel mag * cos("ordered vel dir + "azimuth]

dhy = hy + DELTA TIME * "ordered vel mag * sin(*ordered vel dir + *azimuth)

/* Calculate the foothold centroid. (Forward gaits only) */

fhcenx - (fli[3].x+fhj4].x+fh[5].x+fh[6].x)/4.0;

fhceny = (fh[3].y+fh'4].y+fhj5].y+fh[6].y)/4.0;

/* Calculate the desired azimuth angle. */

dazimuth = atan2((dhy-fhcen y),(dhx-fhcen x)):

diffazm = dazimuth - *azimuth:

/* Adjust the difference to a value between pi and -pi. */

if (diffazm < -3.14159)

{

diffazm += 6.2831853;

}

if (diffazm > 3.14159)

<

diffazm -= 6.2831853:

\

I* Calculate the desired center of gravity. * '

dcgx = dhx - HALFLENGTH " cos(dazimuth);

dcgy = dhy - HALFLENGTH * sin(dazimuth);

* Calculate the desired rates (earth coord.). */

desired rate. x - (dcgx - *tx)/DELTA_TIME;
desired rate.y - (dcgy - *ty)/DELTA_TIME;
desired rate.z = diffazm /DELTA TIME;

/* Convert to body translation and rotation rates. */

ordered rate->x -~ cos(*azimuth) * desired rate.x

- sin("azimuth) " desired rate.y;

ordered rate->y — cos(*azimuth) * desired rate.y

- sin("azimuth) * desired rate.x;

ordered rate->z = desired rate.z:

} /* end of steering conv */'

119

www.manaraa.com

, » . , »«»x****»:»xx**xX********XXX***XX>r,-r*-. t . -. , , , ,xxxx»x»XX*X

This is a routine for the iris-2400 program walk.c.

status, c

This routine creates a status report to be displayed

on the viewing screen beneath the ASV.

Relle Lyman 27 Mar 1987

^include "gl.h"

^include "device. h"

include "walk.h"

status report (ordered rate, trans rate, rot rate,b footpos, period. alpha,gamma.
theta,slow flag, roll, elev, azimuth, tx.ty,tz)

int *slow flag; * flag indicating deceleration is needed * '

Angle theta|7], * leg component angles *

alpha 7 .

gamrna(7];

float * period. * period of leg cycle

*tx.*ty.*tz, /* position of body in earth coordinates *

*roll.*elev.*azimuth: /* body Euler angles
*

vector *rot rate, /'* body rotation rates
*

trans rate, / body translation rates *
'

* ordered rate. * ordered lateral and longitudinal and > aw rates */

b footpos 7 : * foot position in body coordinates *

{

int l.k:

char str fpx 7 100 .strJpy[7][lOO|,str_fpz!7][lOO],

str orx 100 .str_ory(lOO:,str_orzllOO],

str_trx;100].str_try[lOO],str_trz(lOO],

str rrx;]00],str_rry[l00),str_rrzjl00j,

str_alpha!7]|lO0j,str_gamma[7j[l00],str_theta:7j|100],

str period |l00j,str_slow| 100],

str tx[lOO],str_tyilbo|, str_tzll00],

str roll|T00j,str azimuthllOO ,str elevllOO ;

120

www.manaraa.com

st.atus.c

spnn

sprin

sprin

sprin

sprin

sprin

sprin

sprin

sprin

sprin

sprin

sprin

sprin

sprin

sprin

sprin

tffstr orx." c77.2f", ordered rate->x);

tf(str ory." (
77.2f", ordered rate->y);

tffstr otz"%7 2P\ ordered rate-:>z):

tffstr trx." ac7.2f',trans_rate->x);

tffstr try. "9? 7.2P. trans rate- >y);

tffstr trz,"%7.2f".trans_rate->z);

tf(str_rrx,"%7.2f",rot_rate->x);

tf(str_rry,"%7.2f",rot rate->y);

tffstr rrz."%7.2f". rot rate- >z);

tffstr period. MCx9.5f".*period);

tffstr Jx."
c^7.2fVtx):

tf(str_ty."%7.2f".*ty);

tf(str_tz,"%7.2f",*tz);

tffstr roll,
" c
~o7d",((int) (*roll * 573.0)));

tffstr azimuth. ,K77d",((int) (*azimuth * 573.0)));

tffstr_elev,"%7d"
l
((int) (*elev * 573.0))):

for (k=l;k<7;k++)

{

sprintffstr fpx k ,'
,(
H>7.2f".b footposlkj.x);

sprintffstr fpv k],"%7.2f",b_footpos[k].y);

sprintf(str_fpz(k;," c>67.2f".b_footposjk z):

sprintffstr alpha(k;,"%7d".alphaik^;

sprintffstr gamma I k ,"%7d",gammaiki):

sprintf(str_thetajk],"%7d",thetajk]);

}

pushmatrixf);

viewportfO. 400, 0,767);

ortho2(0. 0,400. 0.0. 0.767.0):

colorfBLACK);

rectfiflO. 10. 400.370);

color(YELLOW);

rectfi(20. 20. 390,360);

colorfBLACK);

cmov2i(220,340);

charstrf'X"):

cmov2i(280.340);

charstrf'Y");

cmov2i(340.340):

charstrf'Z"):

cmov2i(30,325);

charstrf'ordered rate");

cmov2i(30,310);
~

charstrf'trans rate");

cmov2i(30,295J;

charstrf'rot rate");

cmov2i(30,280);

charstrf "posit ion")

;

121

www.manaraa.com

status. c

cmov2i

rharstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

210,265):

"ROLL"):

260,265);

"ELEV."):

310.265):

"AZIMUTH");

30.250);

"current attitude"

30.235);

"ordered attitude'

30,210);

"period"):

if(*slow flag == SLOW) * moving too fast
*

{

cmov2i(750,220);

color(RED):

charstr("TOO FAST"):

color(BLACK);

}

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

30.185):

".x ft pes (1-3)");

110.170):

"(4-6)"):

30,155);

"y ft pos (1-3)");

110.140);

"(4-6)");

30.125);

"z ft pos (1-3)");

110.110);

"(4-6)");

30.95);

"ALPHA (1-3)"

110,80);

"(4-6)");

30,65);

"GAMMA (1-3)

110.50);

"(4-6)"):

30.35):

"THETA (1-3)"

110.20);

"(4-6)"):

122

www.manaraa.com

status. c */

cmov2i

charstr

cmo\2i

charstr

cmo\2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmo\2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmo\2i

charstr

180.325);

str orx);

240,325);

str ory);

300,325);

str orz):

180,310);

str trx);

240,310);

str try):

300,310);

str trz);

180,295);

str rrx);

240,295);

str rry);

300.295):

str rrz):

180,280);

strtx);

240,280);

strty);

300,280):

str tz);

180,210);

str period);

180,250);

str roll);

240,250):

str elev):

300.250):

str azimuth)

123

www.manaraa.com

status, c

for (i ~ l:i- 4;i-

k= 110-

cmov'2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmo\2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstr

cmov2i

charstrfs

cmov2i

charstr(s

i*70;

k. 185);

str fpxli]

k.170);

str fpx i-

k,155);

str fpyjij

k.140);

str_fpy[i+3

k.125);

str fpzji]);

k.flO);

str fpz i + 3

k.95);

str alpha i

k,80);

str alpha i-

k,65);

str gamma
k,50);

str gamma
k.35);

tr thetaji])

k.20);

tr theta .[-t

>):

3);

popmatrix();

124

www.manaraa.com

This is a function for the iris 2400 program walk.c.

support.

o

Relle Lyman 21 Aug 1986

^include "gl.h"

^include "device.
h''

^include "walk.h"

^include <stdio.h>

^include <math.h>

support plane(spe)

This module will compute a new estimated support plane based on

the position of the supporting legs. As a temporary measure it

is assumed the support plane is flat and at "sea level" (i.e.

z =). The equation for the plane is Ax— By+Cz+ D=0. */

plane *spe; * estimated support plane in earth coordinates *

spe->a = 0.0:

spe- >b = 0.0;

spe->c = 1.0;

spe->d = 0.0;

125

www.manaraa.com

##x#!(:***x***************

This is a function for the ins 2400 program walk.r.

body rates.

c

Relle Lyman 19 Apr 1987
XX»-***x*x*********x*XX*****X*

^include "gl.h"

^include "device. h"

^include "walk.h"

-include < stdio.h

^include < math.h

body ratesfrot rate. trans rate.spe.h,invh, ordered rate.tx,ty.tz,

roll. elev, azimuth)

This function computes the body rotation and translation rates. */

vector *rot rate. * rotation rate * '

*trans rate. * translation rate
*

ordered rate: / ordered x translation, y translation.

plane *spe; * support plane in earth coord */

float h 4] [4], ./* homogeneous transformation matrix *

invhl4]
i 4 j

,
I* inverse transformation matrix *

t

*tx,*ty,*tz, /* position of body in earth coordinates
*

* roll. *elev. "azimuth: * body Euler angles */

int i.j:

float eta, * body plane attitude wrt earth plane */

eta d, * desired body plane attitude *

height, * distance form CG to est. support plane */

height d. * desired height *j

gamma. * angle between desired and present body unit normal vectors *,

kx, * x component of rotation unit vector in body coord */

ky, /* y component of rotation unit vector in body coord */

ka. /* control law gain */

a,b,c, /* body plane desired unit normal in body coord */

length, /* rotation vector normalizing factor

celev,selev.telev, '* sine. cosine, tangent of elev

croll,sroll,cazim,sazim, / sin and cos of roll and azimuth

m;

* /

* /

plane spb; /* support plane in body coordinates
*

vector db unit norm. /* desired body plane unit normal in earth coordinates */

trans rate e, '* Translation rates in earth coordinates

rot rate e; * Rotation in bod} - Euler rates */

126

www.manaraa.com

/* body rates. c */

* Calculate the body plane attitude, (level ground assumption!)*

eta = 0.0;

* Calculate desired body plane attitude (level ground assumption!)*/

eta d = eta;

/* Calculate the desired body clearance, (level ground assumption!)*/

heightd = HO;

* Calculate the support plane coefficients in body coordinates. */

/* [spb] T = [spej T * h

spb.a = spe->a * h[0][0] + spe->b * h[l][0' + spe->c * h[2j[0] + spe->d * h[3][0];

spb.b = spe->a * h[0][l] + spe->b * h[l][l + spe->c * h:2 |1 + spe->d * h[3j[l];

spb.c = spe->a * h[0][2] + spe->b * h[l][2] + spe->c * h[2][2j - spe- :>d ' h[S]'[2];

spb.d = spe->a * h[0j[3j + spe->b * h[l][3j + spe->c * h 2 [3 + spe->d * h 3 3 ;

/
* Height of body CG above support plane */

height = spb.d;

Calculate desired unit normal for the body plane in earth coord. */

m = sqrt(spe- -a * spe->a -+- spe->b * spe->b);
'* check for division by zero */

if (m>0.0)

{

db unit norm.x = spe->a
x
sin(eta d) / m;

db unit norm.y = spe->b * sin(eta d) / m;

db unit norm.x = 0.0;

db unit norm.v = 0.0;

}

db unit norm.z = cos(eta d);

127

www.manaraa.com

* body rat ps. c

Transform the desired unit normal vector of the body plane

from earth to body coordinates. ja,b.c:T = invhr*b unit norm

Note: invhr is the inverse of the rotational transformation

submatrix (first three rows and columns of h).
*

a - invh|0 |0l*db unit norm.x r invh:Oj[l]*db unit norm.y +
invh 2i*db unit norm.z:

b = invhjlj[0 *db unit norm.x — invhiljll *db unit norm.y +
invh 1 2l*db unit norm.z:

c = invh 2 *db unit norm.x + invh'2][l]*db unit norm.y —

invh 2 [2]*db unit norm.z;

* Control law yielding an exponential response *

* d gamma/dt = -ka * gamma */

ka = 1 TIME CONSTANT 1;

gamma = acos(c):

length = sqrt(a*a + b*b);

if (length < .00001)

{

kx -- 0:

kv - 0:

}

else

{

components of rotation unit vector in body coordinates

kx = -b length;

kv = a length;

}

* Calculate rotation and translation rates
*

trans rate->z = -ka * (height d - height):

rot rate->x = -ka * kx * gamma;

rot rate->\ = -ka * ky * gamma:

* Rate = dt * acceleration — old rate

trans rate->x = DELTA TIME * (ordered rate->x - trans rate->x)/

TIME CONSTANT 2 + trans_rate->x;

trans rate->y = DELTA TIME * (ordered rate->y - trans rate->y)/

TIME CONSTANT 3 - translate- >y;

rot rate- >z = DELTA TIME * (ordered rate->z - rot rate->z)/

TIME CONSTANT 3 + rot "rate- >z;

* Conversion to Earth coordinate translation rates. */

croll = cos(*roll);

sroll = sin(*roll);

telev = tan(*elev);

celev = cos(*elev);

selev = sin(*elev);

cazim = cos(*azimuth);

sazim = sin(*azimuth);

128

www.manaraa.com

* body rates. c
*

trans rate e.x = trans rate- :x * croll'cazim +
trans rate->y * (cazim*sroll*selev - sazim*celev)

trans rate->z * (sazim*selev - cazim*sroll*celev)

trans rate e.y = trans rate->x * crolTsazim 4-

trans rate->y * (sazim*sroll*selev — cazim*celev)

trans rate->z * (cazim*selev — sazim*sroll*ce]ev)

trans rate e.z = -trans rate- >x * sroll -

trans rate->y * croll*selev —

trans rate->z * cazim*celev;

/* Conversion to body Euler rates */

rot rate e.x = rot rate->x + rot rate- >y * telev * sroll -+-

rot rate->z * telev * croll;

rot rate e.y = rot rate->y * croll - rot rate->z * sroll;

rot rate e.z = rot rate->y * sroll / celev +
rot rate->z * croll / celev:

/* Integration routine */

*tx += trans rate e.x * DELTA TIME;
*ty += trans rate e.y * DELTA TIME;
*tz += trans rate e.z * DELTA TIME;
*roll += rotrate je.x * DELTA TIME:
*elev += rotrate e.y * DELTA TIME;
* azimuth += rot rate e.z * DELTA TIME;

* Update the H matrix

croll = cos(*roll);

sroll = sin(*roll);

telev = tan(*elev):

celev = cos(*elev):

selev = sin(*ele\);

cazim = cos(*azimuth):

sazim = sin(*azimuth):

/

129

www.manaraa.com

bod v rates. c
*

hjOj [0
j

h[0] [1]

h i)
[2]

h|0j I' i

>

h[l] [0]

h[l] 1

h[l] 2

h[l] :'.

h[2j jo]

h[2l i

h(2
;

2

h[2' ::

h[3
:

(i

h 3 l

h(3 (21

h[3
•>

- croll cazim:

= cazim*sroll*selev - sazim*cele\ :

= sazim*selev + cazim*sroll*celev;

= *tx;

= sazim*croll:

= cazim*celev + sazim*sroll*selev;

= sazim*sroll*celev — cazim*selev;

= *ty;

= -sroll;

= crolPselev;

= croll*celev;

= *tz;

= 0.0;

= 0.0:

= 0.0;

= 1.0;

* inverse homogeneous transform matrix *
/

for (i=0; i<3; i)

for(j=0;j- 3;j++)

<

invh i j = hljjji);

invh 3][i] = 0.0;

invh i](S = -(hj0][ij*h[0][3l hill|i.*hilll3| - h|2||i!*h|2||3|

invhi3||3 == 10:

* end of body rates
*

130

www.manaraa.com

This is a function for the iris 2400 program walk.c.

con work vol.c

at*:***:*:***:*.*:*:*************

Relle Lyman 19 Apr 1987
^*^*****X***********************^^*** + *********T*TX*X*** + ***** /

^include "gl.h"

f include "device. h"

f include "walk.h"

^include <stdio.h>

f include <math.h>

con work vol(cwv.b footpos.leg status,warning)

This module will compute a new constrained working volume for

improved stability on rough terrain. Currently all values are

set for a perfectly flat support plane. Dimensions are

expressed in cm. */

work vol cwv[7j;
/

* constrained working volume in body coordinates

vector b footpos 7 ;

/,:
foot position in body coordinates */

int leg status[7],/* status of leg (supporting, liftoff, transfer.

placement) * '

*warning; * flag indicating supporting leg is outside of

the working volume */

* /

int i;

^warning = OFF:

for (i=l;i<7;i++) /* check each leg */

{

if (leg status i == SUPPORTING)

if ((b footposjij.x < cwvjij.x.min)j|

(b footposli .x > cwv[i].x.max)|

(b footposjij.y < cwv[i].y.min)||

(b footpos'ij.y > cwv[i].y.max)||

(b footposjij.z < cwv(ii.z.min)!
'

(b footposlii.z > cwv[ij.z.max)) /* outside limits */

{

*warning = ON;

}

131

www.manaraa.com

con work vol.c *

,

if (^warning == ON)

{

pushmatrixQ;

pushviewport ();

viewport(0. 130. 0,80);

ortho2(0. 0.130. 0.0. 0.80.0);

color(RED);

rectfi(10,10.130.70);

color(BLACK);

cmov2i(10.30);

charstr(" OUTSIDE CWV"]
popviewport();

popmatrix();

\

}

132

www.manaraa.com

**********:i:*:*::k ***:?:*****************:********::** ****** »". *. • •

This is a function for the iris2400 program walk.c.

opt period.

c

Relle Lyman 29 Apr 1987
:*****************^*^***x**ap************3F***»:*^:*»:*x******^c* '

/

^include "gl.h"

^include "device. h"

^include "walk.h"

^include <stdio.h •

^include <math.h>

optimal period(legphase,b footpos,rot rate, trans rate,cwv, leg status, period)

* This function computes the optimal period for walking. */

vector *rot rate. /'* body rotation rate *,'

trans rate. ' body translation rate */

b footposi? ;
'* position of foot in body coordinates */

work vol cwv 7 : /* constrained working volume * '

float legphasei7 . * phase of leg

period: / body support period

int leg status[7j; /* status of leg = supporting */

{

vector b footvel; /* foot velocity */

float fx.fy.fz, /* foot position */

tmin. /* minimum temporal kinetic margin */

tx,ty,tz, /* temporal kinetic margins */

d, /* distance to cwv limit */

speed, /* magnitude of body velocity */

fs period, /* forward support period */

bs period, /* backward support period */

m in fs period, /* minimum forward support period */

min bs period, /* minimum backward support period */

fs phase, /* forward support phase */

bs phase. /* backward support phase */

mvx,mvy,mvz;

int l.

minleg:

static int gait =FOR WARD; f * Wave gait direction */'

133

www.manaraa.com

* optimal period

:

Initialize variable>

tmin - LONG TIME;

nun fs period = LONG TIME:

nun bs period - LONG TIME;

For each leg compute the maximum instantaneous support period.
*

for (i=l; i*^ 7; i++)

{

* Support check

if (leg status i, == SUPPORTING)

{

/* Compute foot velocity. */

b footvel.x = -(trans rate->x)^(rot rate->z * b footposjij.y)

-(rot rate->y * b footpos 1 .z);

b footvel.y = -(trans rate- >y)-(rot rate->z * b footposlij.x)

-f (rot rate->x * b footpos(i.z);

b footvel.z = -(trans rate->z) + (rot rate-">y * b footpos 1 x)

-(rot rate- x * b footpos 1 .y);

* Check to see if foot is in cwv.

fx = b footpos ij.x;

fy = b footpos i|.y;

fz = b footpos|i .z:

if ((fx- cwv i x nun) (fx cwvi .x.max)j

(fy cwv i y.min)
;

(fy cwv i;.y max)

(fz- cwv i.z.min)| (fz > cwv(ij.z.max)) /* outside cwv */

<

tmin = 0.1:

}

else

{

/* Compute distance to x limit and the temporal

kinetic margin in the x direction. */

if (b footvel.x > 0.0)

{

d = cwv ij.x.max - fx;

tx = d / b footvel.x:

}

else if (bfootvel.x < 0.0)

<

d = fx - cwv ij.x.min;

tx = d -b footvel.x;

}

else

{

tx - LONG TIME;

}

134

www.manaraa.com

optimal period

/* Check for minimum value. /

if (tx- tmin)

tmin = tx;

}

/* Compute distance to y limit and the temporal

kinetic margin in the y direction. */

if (bfootvel.y > 0.0)

{

d = cwvjij.y.max - fy;

ty = d / b footvel.y;

}

else if (b footvel.v < 0.0)

{

d = fy - cwvlij.y.min;

ty = d / -b footvel.y;

}

else

i

ty = LONG TIME;

}

/* Check for minimum value. */

if (ty< tmin)

{

tmin = ty;

}

/* Compute distance to z limit and the temporal

kinetic margin in the z direction. */

if (bfootvel.z > 0.0)

{

d = cwv[i].z.max - fz;

tz = d / b footvel.z;

}

else if (bfootvel.z < 0.0)

{

d — fz - cwv[i].z.min;

tz = d / -b footvel.z;

}

else

{

tz = LONG TIME;

}

/* Check for minimum value. */

if (tz<tmin)

{

tmin = tz;

}

} /* end inside cwv */

135

www.manaraa.com

optimal period

('ompute the support phase for forward and backward gaits.
*

fs phase = legphase i BETA:
bs phase (BETA - legphaseli:) BETA;

/* Compute support period. */'

fs period - (tmin-0.1)/(1.0 - fs phase);

bs period = (tmin-0.1) /(1.0 - bs phase);

/* Find the minimum support period. */

if (fs period < min fs period)

{

min fs period = fs period;

if (bs period < min bs period)

{

min bs period = bs period;

}

(

} * end support check

}
* end leg loop

*

'* Choose gait. *
/

speed sqrt(trans rate->x * trans rate->x +
trans rate->y * trans rate->y);

if ((speed OUTER_LIMIT)&&(trans_rate->x > INNER LIMIT))

{

gait - FORWARD:
>

else if ((speed<OUTER_LIMIT)&&(trans_rate->x< -INNER LIMIT))

{

gait - BACKWARD;
}

else

<

/* No gait change. */

}

if (gait == FORWARD)
{

* period = min fs period;

}

else

{

'period = min bs period;

I

} /* end optimal period */

136

www.manaraa.com

** **************************

This is a function for the iris 2400 program walk.c.

decelerate.

c

Relle Lyman 04 May 1987
e * * * * *

^include "gl.h"

#include "device. h"

^include "walk.h"

^include • stdio.h>

^include <math.h>

decelerate(rot rate, trans rate, period, slow flag.min period)

/
* This function computes the foot transfer rate and slows the

vehicle if the maximum rate is exceeded. */

vector *rot rate, /* body rotation rate */

trans rate: / body translation rate */

float * period. * optimal period for the leg cycle */

min period: / minimum leg period */

int *slow flag: /* flag indicating vehicle has been slowed. */

int i,j:

float transfer time; /* time from liftoff to placement */

if(*period < *min period) /* slow down */

{

*slow flag = SLOW;
*period = *min period;

trans rate->x *= .95;

trans rate->y *= .7;

trans rate->z *= .95;

rot rate->x *= .95;

rot rate->v *= .95;

137

www.manaraa.com

decelerate.

c

* display warning on screen

pushmatrix():

pushviewport ().

viewport(200, 330. 0.80);

ortho2(200. 0.330. 0,0. 0.80.0);

color) YELLOW);
rectfi(210,10,330.70):

color(BLACK);

cmov2i(210,30);

charstrf" DECELERATION
popviewport ();

popmatrix();

}

else

{

*slow flag = NORMAL;

end of decelerate*

138

www.manaraa.com

/

This is a function for the iris2400 program walk.c.

leg phase.

c

Relle Lyman 24 Aug 1986

#include "gl.h"

^include "device. h"

^include "walk.h"

^include <stdio.h >

^include <math.h>

leg phasef legphase, rel legphase. period)

/* This function computes the phase for each leg. */'

float legphase 1 ?,, I* phase of leg */

rel legphasej7|, /* relative phase of leg */

period: ' body support period */

{

static float bodyphase = 0.0; /* kinematic phase of body *

float modulus one(); /* modulus one function */

int i:

/* Calculate new body phase. */

bodyphase - modulus one(bodyphase + DELTA TIME/(*period)

/* Calculate new phase for each leg. (modi) */

for (i= 1 ; i< 7 ; i- —

)

{

legphase i = modulus one(bodyphase - rel legphase(ij);

>

} /* end of legphase */

139

www.manaraa.com

This is a function for the iris'2400 program walk.c.

ft traj.c

Relle L\man 19 Apr 1987

include "gl.h"

^include "device. h"

include "walk.h"

^include <stdio.h>

^include <math.h>

foot trajectory(legphase. period. leg status, footpos.b footpos.fh.

oldfh,invh,h,cwv,trans rate, rot rate, selected gait)

* This function calculates the trajectory for each foot. */

float legphase 7 . * Phase of individual leg */

* period, * Optimal period */

h!4'|4j, /* Homogeneous transformation matrix */

invh|4|J4 :

* Inverse transformation matrix */

vector footpos'7'.

b footpos 7 .

fh 7 .

* Foothold selection (earth coordinates) */

oldfh 7 .

* Old foothold selection (earth coordinates) */

"trans rate, /* Body translation rate */

*rot rate: * Body rotation rate */

work vol cwv 7 ;

int leg status 7 .
* State of individual leg */

selected gait; / Desired tripod gait */

{

float trans time. /* Time required to go from leg liftoff to leg touchdown *

end lift phase, /* Point in transfer phase where liftoff ends */

begin place phase, /* Point in transfer phase where placement begins *

trans phase; /* Leg transfer phase */

static int liftoff flag 7;=OFF. * Indicates first time entering the

subroutine in the current leg cycle. * /

transfer flag[7 =OFF,
place flag 7: =OFF;

static vector d footpos[7
; /* Desired foot position */

int i; /* Leg number */

140

www.manaraa.com

* foot trajectory */

* Calculate the time required to move a leg from liftoff to

touchdown. (Transfer time) */

trans time = (1.0- BETA) * _ABS(* period):

/* Calculate phase points marking change of transfer mode

(direction). Note: Modify later to account for transfer

time. */

end lift phase = 0.2;

begin place phase = 0.8;

/* For each leg */

for (i=l: i<7; i++)

{

/* Calculate transfer phase. */

/* (lift = 0.0 place = 1.0) */

if (* period < 0)

{

trans phase = (1.0 - legphase i\) , (1.0 - BETA);

)

else

{

transphase =
(legphaseji - BETA) '(1.0 - BETA);

}

Find the leg transfer state. * '

if (trans phase < 0.0)

{

leg status, i = SUPPORTING:
support trajectory (liftoff flag, place flag. transfer flag.footpos,

b footpos.invh.i);

}

else if (trans phase < end lift phase)

{

leg status|i| = LIFTOFF;
lift trajectory(liftoff flag, place flag, transfer flag,footpos,

b footpos,invh,&trans time,&trans phase,&end lift phase, i);

}

else if (trans phase < begin place phase)

{

legstatusiij - TRANSFER FORWARD;
transfer trajectory (liftoff flag, place flag, transfer flag,footpos,

b footpos,h,invh.<L'trans time.&trans phase,

&begin place phase, i,cwv, trans rate, rot rate,fh.oldfh,

period, selected gait);

}

141

www.manaraa.com

/* foot trajectory */

else ' end place phase < trans phase < 1.0

{

leg status i - PLACEMENT;
placement trajectory(liftoff flag. place flag. transfer flag.footpos,

b footpos.invh.&trans time.&trans phase, i);

}

I

}
'* end of foot trajectory */

142

www.manaraa.com

foot trajectory */

lift trajPctory(liftoff flag. place flag. transfer flag.footpos.b footpos.

invh, trans time, trans phase. end lift phase. leg number)

/* This function calculates the trajectory of the foot while it is

being lifted from the ground. It is called from foot trajectory ().*'

vector footpos! 7j, * Present foot position in earth coordinates */

b footpos[7]; /* Present foot position in body coordinates */

float *trans time,

*end lift phase,

*trans phase,

invh 4];4 ; /* Inverse homogeneous transformation matrix */

int liftoff flagj?
,
/* Indicates the first time entering subroutine

in the current leg cycle. */

transfer flag|7
,

place flag[7],

leg number:

{

float lift time:

int i:

static vector d footpos 7 : Desired foot position

in earth coordinates *

i = leg number:

/* Calculate the desired footposition. */

if (liftoff flagjii != ON)

{

d footpos[i].z = footposlij.z + FOOTLIFTHEIGHT;
liftoff flag I i] = ON;
transfer flagjij = OFF;
place_flag[il = OFF;

}

(Calculate the time required to reach the desired height

from the present foot position. */

lift time = *trans time * (*end lift phase- *trans phase)

143

www.manaraa.com

* foot trajectory
*

!

* Calculate the new foot position. (Earth Coordinates)

if (DELTA TIME < lifttime)

{

footposjij.z — = (d footposji .z - footpos ij.z)

* DELTATIME / lift time:

}

else /* Last increment of time

{

footposjii.z = d footpos ij.z;

1 Transform to body coodinates. */

f bfootpos i']T = invh * [footpos[i]]T */

transform point(b footpos, invh. footpos. i);

}
* end of lift trajectory

144

www.manaraa.com

* fool trajectory
*

transfer trajectory (liftoff flag. place flag. transfer flag.footpos.

b footpos.h.invh. trans time. trans phase. begin place phase,

leg number.cwv, trans rate. rot rate, fh.oldfh, period. selected gait)

I* This function calculates the trajectory of the foot during the

phase in which the foot is transfered forward. The function

is called from foot trajectory ().*/

vector footpos 7], /* Present foot position in earth coordinates */

b footpos|7J, /* Present foot position in body coordinates */

fh[7], /* Selected footholds (earth coordinates) */

oldfh ! 7] ,
/* Old selected footholds (earth coordinates) */

trans rate, / Body translation rate */

rot rate; / Body rotation rate */

work vol cwv[7|; /* Constrained working volume in body coordinates */

float *trans time,

*begin place phase,

*trans phase.

* period. /* Optimum period of gait */

h 4 [4],
/* Homogeneous transformation matrix */

invh 4] 4]; /* Inverse transformation matrix */

int liftoff flag[7], /* Indicates the first time entering subroutine

in current leg cycle */

transfer flag[7],

place flag 7 .

"selected gait, * Desired tripod gait */

leg number;

{

float trans fwd time. /* Time remaining in the transfer forward phase */

vx,vy, /* Velocity of cockpit in body coordinates */

rel hd, /* Relative heading of cockpit velocity */

proj dist. /* Projected distance forward for new footholds */

min time; /* Minimum time to reach any cwv limit */

int i;

vector cwv velocity, /'* Instantaneous velocity of the center of

the cwv (earth coodinates) */

time to limit, /* Time to reach the cwv limits */

bfhj7!, /* Selected foothold in body coordinates */

bd footposj7j: * Desired foot position in body coordinates */

static vector d footpos!7|; /* Desired foot position in earth coordinates */

145

www.manaraa.com

foot trajectory
*

i = leg number;

if ("selected gait = = FTL GAIT)

{

if (transfer flagi! != ON)

{

transfer flag ij = ON;
liftoffflagii! = OFF;
place flag j i = OFF;

/* Save foothold position. */

oldfhji x = fh ij.x;

oldfh i y = fh i].y;

oldfhji .z = fhji|.z;

projdist = LENGTH * 0.21666

switch (i)

\

case 1

:

*

HALFLENGTH;

* find new left foothold

vx= trans rate->x;

vy = trans rate->y + rot rate->z

rel hd = atan2(vy.vx):

bfh 1 .y = 82.0;

bfh 1 x - HALFLENGTH-proj dist*cos(rel hd)-(82.0-

proj dist*sin(rel hd))*tan(rel hd):

bfh 1 z = -T60.0;

/* Transform to earth coordinates. */

' fh i]]T = h * [bfh i]]T */

transform point (fh.h, bfh, 1);

break:

case 2: /* find new right foothold */

vx— trans rate->x;

vy = trans rate- >y + rot rate- >z * HALFLENGTH;
rel hd = atan2(vy,vx);

bfhT2;.y = -82.0;

bfh|2<.x = HALFLENGTH-^proj dist*cos(rel hd)-(-82.0-

proj dist*sin(rel hd))*tan(rel hd);

bfhl2|.z = -160.0;

/* Transform to earth coordinates. */

/* [fh[i]]T = h * [bfh|i]]T */

transform point(fh.h.bfh.2);

break:

default: * back leg uses old front leg foothold *

fhiil.x = oldfh|i-2].x;

fhjij.y = oldfh[i-2].y;

fh l .z = oldfhii-2.z;

146

www.manaraa.com

* foot trajectory
*

/* determine the desired foot position */

d footpos[i;.x = fhjij.x;

d footposji y = fh[i].y;

d footposji .z = fhli .z;

else * FWD WAVE GAIT Calculate a new desired foot position

at each time increment. */

{

/* Calculate the desired touchdown point *

/* Future change note: Change from cwv center to midstance. */

/* Calculate foot velocity at center of cwv (body coordinates) */

cwv velocity. x = trans rate->x - rot rate->z * cwvjij.y. center

+ rot rate->y * cwv[i|.z. center;

cwv velocity. y = trans rate->y + rot rate->z * cwv it. x. center

- rot rate->x * cwv[i;.z. center:

cwv velocity. z = trans rate- z - rot rate->y * cwv|i|.x. center

4- rot rate->x * cwvji].y. center:

/* Calculate the time to reach the limits of the cwv. */

if (cwv velocity. x < 0.0)

time to limit. x =
(cwv ij.x.min - cwv 1 .x. center) /cwv velocity. x;

se if (cwv velocity. x > 0.0)

time to limit. x =
(cwviij.x.max - cwv[i].x.center)/cwv velocity. x;

else

timetolimit.x = LONGTIME;

(cwv velocity. y < 0.0)

time to limit. y =
(cwv|il.y.min - cwvfij.y. center) /cwv velocity. y;

Ise if (cwv velocity.y > 0.0)

time to limit. y =
(cwv ij.y.max - cwv'il.y. center) cwv velocity. y;

lse

time to limit.v - LONGTIME;
}

147

www.manaraa.com

;

foot trajectory *

if (cwv \elocitv.z < 0.0)

time to limit. z =
(cwv[i].z.min - cwvji z. center) cwv velocity. z:

}

else if (cwv velocity. z > 0.0)

{

time to limit. z = (cwvji]. z.max - cwv[i.z. center) cwv velocity. z;

}

else

{

time to limit. z = LONG TIME:

}

Determine the minimum time to reach the cwv limit. */

min time = time to limit. x;

if (time to limit.y < min time)

{

min time = time to limit. y:

}

if (time to limit. z < min time)

{

min time = time to limit. z;

I

* Calculate the desired touchdown point in body coordinates. */

* Note: This point changes if the body is in motion. */

bd footpos 1 .x = cwv[i|.x. center -+- cwv velocity. x * min time * .9;

bd footpos i y = cwv[i].y. center -r cwv velocity.y * min time *
.9;

bd footpos i .z = cwvji z. center — cwv velocity. z * min time * .9:

* Transform to Earth coodinates. */

/* id footpos i T = h * ;bd footposjijlT */

transform point (d footpos,h,bd footpos, i);

I

Calculate the time remaining in the transfer forward phase. */

trans fwd time = *trans time * (*begin place phase - *trans phase);

Calculate the new foot position. (Earth Coordinates) */

if (DELTA TIME < trans fwdtime)
r

t

footposjij.x += (d footpos i .x - footpos|i;.x)

* DELTA TIME / trans fwd time;

footpos ij.y -*-= (d footpos i!.y - footpos i y)

* DELTA TIME / trans fwd time;

footpos i|.z = footpos; ij.z: /* Level ground assumption! *

I

148

www.manaraa.com

;

* foot trajectory

else * Last increment of time *

{

footpos[i'.x = d footpos[i].x:

foot post iy = d footpos[i).y;

footpos|ii.z = footpos|ii.z; /* Level ground assumption! */

}

/* Transform to body coodinates. */

/* [b_footpos[i]]T = invh * jfootposjijlT */'

transform point (b footpos,invh,footpos,i);

} /* end of transfer trajectory */

149

www.manaraa.com

* foot (rajectory *.

placement trajectory(liftoff flag. place flag. transfer flag.footpos.

b foot pos.invh. trans time. trans phase, leg number)

* This function calculates the trajectory of the foot while it is

being lowered from the ground. It is called from foot trajectory().*/

vector footpos|7], * Present foot position in earth coordinates */

b footpos|7]; /* Present foot position in body coordinates */

float *trans time,

*trans phase,

invh 4 [4 : * Inverse homogeneous transformation matrix */

int liftoff flag!?:, /* Indicates the first time entering subroutine

in current leg cycle */

transfer flag 7],

place flag 7 .

leg number:

{

float place time:

int i:

static vector d footpos|7|; /* Desired foot position in earth coordinates */

i — leg number:

Calculate the desired foot position. * '

if
(
place_flagjii != ON)

{

d footposjij.z = footposji;. z - FOOTLIFTHEIGHT;
liftoff

-

flagji: = OFF;
transferflag'i] = OFF;
place flag i

1 = ON:

}

/* Calculate the time required to reach the desired height

from the present foot position. */

place time = 'trans time * (1.0- *trans phase);

/* Calculate the new foot position. (Earth Coordinates) */

if (DELTA TIME < place time)

{

footposji .z += (d footpos i .z - footposji .z)

* DELTA TIME placetime:

I

150

www.manaraa.com

,'* foot trajectory*/

else Last increment of time */'

{

footpos i z = d footpos|ij.z:

}

/* Transform to body coodinates. */

/* [b_footpos|i]]T = invh * [footpos[i]]T */

transform point (b footpos, invh,footpos, i);

} /* end of placement trajectory */

151

www.manaraa.com

foot trajectory

/

support trajectory (lift off flag, place flag, transfer flag, footpos.

b footpos. invh, leg number)

This function calculates the trajectory of the foot during the

foot support phase. It is called from foot trajectory ()
*

vector footpos 7], /* Present foot position in earth coordinates
*

b footpos: 7]; ' Present foot position in body coordinates */

float invh[4j[4 ;

/x
Inverse homogeneous transformation matrix *

int liftoff flag 7 ,
* Indicates the first time entering subroutine

in current leg cycle * l

transfer flag7j,

place Hag 7 .

leg number:

int i:

In this phase the foot is kept stationary on the ground. It

is assumed that the foot will not slip or move accidently. */

i = leg number.

Transform foot position to body coodinates. *
j

b footpos i T = invh * footpos i T
transform pointfb footpos. invh. footpos. i);

* Turn off flags. */

liftoffflag i = OFF;

transfer flag i = OFF;
place flagji! = OFF;

} /* end of support trajectory */

152

www.manaraa.com

********XX******xx%***XX******* + xx. **lfLX**xx±x** x *;xx + lf ********X*:****X

This function is for the program walk.c on the iris-2400.

conwalk.c

Based in part on J.H.Kesslers

R. L. Lyman program "conwalker.c"

24 Apr 1987

#include "gl.h"

^include "device. h"

^include "walk.h"

This function calls up the walker from constructwalker (with legs

already properly positioned) and then rotates and translates it as

commanded.

Note: Due to the limited number of bit planes available

four separate walkers are constructed, one for each viewing

quadrant. The walker for each quadrant is drawn from furthest

component to nearest. This provides a quasi- Z buffer effect

while in double buffer mode. */

m akew alker(machineobject,dl,d2,theta. knee,gam ma, alpha, transrot tag.

tr end tag. walker, leg. thighobj.actuatorobj.shinobj,

legmovetag,thighmovetag.actmovetag,shinmovetag ,tx,ty,tz,

roll,elev.azimuth.hx.hy,hz.l4)

Tag transrot tag;4 .tr end tag|4{,legmovetag
)
41,

thighmovetag[]j2J|4],actmovetag[]|2i|4|,shinmovetagj][2!|4];

Object machineobject!4:.walker[4],thighobJi][2][4],actuatorobjij[2]!4J,

shinobji]i2);4],leg[][4J;

int dl ,d2jj,knee[][2]
;

Angle thetaj , alpha ,gammaj];

float tx,ty,tz, roll, azimuth, elev,

hx[7],hy[7],hz[7],l4[7];

int n;

/

153

www.manaraa.com

'* conwalk.c
*

eonstructwalker(walker.dl,d2.knee.alpha.gamma.theta.leg,thighobj,

actuatorobj.shinobj.legmovetag.thighmovetag.actmovetag.

shinmovetag,hx.hy,hz,l4) ;

for (n=0; n<4: n^—) * Rotate and translate the walkers in each

quadrant. */

{

machineobject!n]=genobj();

makeobj(machineobjectinj);

pushmatrixf) ;

/* Note: Each walker is built on the origin. Rotations are done

before translating to the proper location. */

transrot tag n =gentag():

rnaketag(transrot tag n);

translate(tx,ty,tz);

rotate(jint) (elev * 573), 'Y');

rotate((int) (roll * 573). 'X');

rotate((int) (azimuth * 573), 'Z');

tr end tag n =gentag():

maketag(tr end tag n);

callobj(walkerjni);

popmatnx() :

closeobj();

}
* end quadrant loop */

}
'* end of makewalker *

154

www.manaraa.com

/* conwalk.c
*

makeground(groundobject
,)

/* This function creates a checkerboard groundplane below the ASV object.* '

Object *groundobject:

{

Object squareobject;

Tag transqrtag;

static int

groundl[4]|3j = {{ 1000.-500,0}, {1000,500.0}, {-1000,500,0}, {-1000,-500.0}},

ground2[4][3] = {{ 2000,-1000,0}, {2000, 1000,0}, {-2000, 1000,0}. {-2000,-1000,0}},

square[4'j(3] = { {0,-100,0}, {0,0,0}, {-100. 0.0}, {-100,-100,0}};

int i,j;

float tx,ty;

squareobject ^genobj();

makeobj (squareobject);

colorf WHITE);
polfi(4, square);

closeobj():

*groundobject= genobj();

makeobj (*groundobject);

color(RED); /* fill outer background squares */

polfi(4,ground2);

color(GREEN); /* fill inner background squares */

polfi(4,groundl);

for (i=0; i<40: i++)

{

for (j = 0; j<20; j+ +)

{

if ((i+j)%2< 1)

{

tx=(i-20)*(-100.0);

ty=(j- 10)* (-100.0);

pushmatrix();

translate (tx,ty, 0.0);

callobj(squareobject); '* place the white squares */

popmatrixf);

}
/* end if*/

}
/* end for j */

} /* end for i */

closeobjj):

} /* end makeground *

/

155

www.manaraa.com

/
* conwalk.c

const ructw alker(w alker,dl.d2.knee.alpha.gamma.theta,leg.thighobj,

actuatorobj,shinobj.legmovetag.thighmovetag.actmovetag,

shinmovetag.hx.hy.hz.U)

/* This is where the walker is made. Here each part is assembled

and then the parts are put together. This assembled walker is

then rotated and translated in rnakewalker which is called by

the main program. */

Tag legmovetag[;[4 .thighmovetag;ji2][4J,actmovetag[)[2][4l,

shmmovetag]|2][4j;

Object walker|4 .leg '[4 .thighobj[](2][4].actuatorobj[;[2][4J,shinobj[][2][4i;

int dl .d2 .knee j!2];

Angle alpha| gamma[!.theta ;

float hx|7],hy[7],hz[7j, /* leg pivot position * '

1417 :

{

Object body. head. eye, boxobj[7J :

static float leg.x 7! = {0. 0.155. 0.155. 0,0. 0.0. 0,-155. 0,-155.0},

legy 7 ={0.0.82 0.-82.0.82.0,-82.0,82.0,-82.0},

legziT -{0.0.0.0,0.0,0.0,0.0,0.0,0.0};

Coord x,y.z ;

int i,j.k.n,legnum
;

static int

/* Coordinates for building the body of the asv */

blackbody[4][3j={ {206, 50,22}, {206,-50, 22}, {206.-30,-101}, {206, 30.-101}},

lbody arry [4] j3]= { {-200,30,-101}, {-200. 50. 22}, {206,50, 22}, {206. 30,-101}},

rbodyarryi4J[3j = { {-200,-30,-101}, {206,-30,-101}. {206.-50,22}, {-200,-50,22}},

tbodyarry[4][3j = { {-200, 50,22}, {-200,-50, 22}. {206,-50, 22}, {206, 50,22}},

bbodyarry(4|j3! = {{ 206,-30,-101}, {-200.-30.-101}, {-200, 30.-101}, {206. 30, -101}},

backbodyarry(4l3] =
{ {-200, 30,-101}, {-200. -30,-101}, {-200.-50. 22}, {-200, 50, 22}},

156

www.manaraa.com

/* conwalk.c

/* Coordinates for building the hydraulics housing structure */

front _rt_topi4]|3]= { {27,-25. 16}, {38.-25.-13}, {.38, -13,-13}, {27.- 13, 16}},

front _rt_bttm|4]|3! =
{
{38,-25.- 13}, {38.-25.-46}. {38,-13.-46}, {38,- 13. -13}},

rt interior 5jj3| = { {20,-25, 38}, {38,-25,- 13}, {38.-25.-46}. {-38.-25.-46}, {-38,-25, 38}

rt_side[5i[S] = { {-38,-25.38}, {-38,-25,-46}, {38,-25,-46}, {38.-25.- 13}. {20,-25,38}},

lt_intenor:5 3 = {{-38, 25, 38}, {-38, 25.-46}. {38, 25,-46}, {38, 25,-13}, {20, 25, 38 } },

lt_side[5j[3]= {{20,25,38}, {38,25,-13}, {38,25,-46}, {-38,25,-46}, {-38,25,38}},

top_box[4l[3i= {{20,-25,38},{20,25,38},{-38,25,38},{-38,-25.38,}},

back_box[4![3i =
{ {-38, 25,-46}. {-38,-25,-46}, {-38,-25, 38}, {-38, 25, 38}}.

front top[4][3j={{20,25,38}, {20,-25, 38}, {27,-25, 13}, {27,25.13}},

front Jt_top|4J|3] = { {27, 13, 16}, {38. 13.-13} ,{38,25,-13}. {27,25. 16}},

front_lt_bttm[4][3] = {{38,13.-13}, {38, 13.-46}, {38,25.-46},{38,25.-13}},

bttm_lt[4][3] = { {38. 25,-46}, {38, 13,-46}, {-38, 13,-46}, {-38,25,-46}},

bttm_rt[4j;3] = { {38.-25, -46}, {38,-13,-46}, {-38, -13, -46}, {-38.-25,-46}}.

highbox_topi4][3]= {{-8,-25,88},{8,-25,88},{8,25,88},{-8.25.88}}.

highbox_front(4][3] = {{8,25,88},{8,-25,88},{l0,-25,38},{l0,25,38}},

highbox_back[4][3] =
{ {-8,-25,88}, {-8.25,88}, {-10,25,38}, {-10,-25.38}},

highbox_rt[4)[3) = {{ 8,-25, 88}, {-8,-25, 88}, {-10,-25, 38}, {10,-25, 38}},

highbox lt[4][3]= { {-8,25,88}, {8,25,88}, {10,25,38}, {-10,25,38}},

rtspar front 14 |3
' =

{
{79.-13, -20}.{ 79. -25.-20}, { 79.-25,-30}, {79,-13,-30} },

rtspartop 4 3> = {{ 79. -13.-20}, {38.- 13.- 19}. {38, -25,-19}, {79,-25,-20}},

rtspar bttm 4 [3 ={ {38.-13,-32} .{79. -13.-30}, { 79. -25,-30}, {38,-25,-32}},

rt_spar_rt<4 3 -{{38,-25.-32}, {79,-25. -30}. {79. -25,-20}, {38,-25,- 19}}.

rt_spar_lt ;

4! 3i =
{ {79. -13,-30}, {38,-1 3,-32}. {38.- 13.- 19}, {79,-13,-20} },

It spar front i4]|3j = {{ 79. 25, -20}, {79, 13, -20}, {79. 13, -30}. {79, 25.-30}},

It sparJopJ4]|3]= { {79,25,-20} ,{38,25,-19}, {38, 13,-19}, {79, 13,-20}},

lt_spar_bttm[4][3j = { {38. 25,-32}, {79, 25,-30}, {79, 13,-30}, {38, 13,-32}},

lt_spar_rt'4][3} = { {38, 13,-32}, {79. 13.-30}, {79, 13.-20}, {38, 13,-19}},

lt_spar_lt(4!j3] =
{ {79,25,-30}, {38,25,-32}, {38, 25,-19}, {79,25,-20}},

/* cab construction arrays */

cab_bottom[4][3j = { {305,-30,-101}, {206,-30,-101 }, {206,30,-101}, {305, 30,-101}},

cabJop;4;!3={ {250. 33. 74}, {206. 33. 74}. {206.-33, 74}, {250.-33. 74}},

cab _fwd_support[4][3] =
{ {305, 30,-101}, {305. 41, -16}, {305. -41, -16}, {305,-30,-101}},

cab_fwd_lower!4]|S] = { {305. 41.-16}, {318,48.8} ,{318,-48. 8}, {305.-41.-16}},

cab_fwd_upper
:
4j|3] = {{318,48,8},{302,33.68},{302.-33.68},{318.-48,8}},

cab_fwd_ovhd[4j|3 ={ {275, 33, 68}, {250. 33.74 },{ 250, -33, 74}. {275,-33,68} },

cab_rt_support[4][3]={{305,-30,-10l}, {305,-41,-16}, {206,-41.-16}, {206,-30,-101}},

cab rt_lower|4)[3! = {{305,-4 1,-16}, {318.-48, 8}, {206. -48. 8}, {206,-41. -16}},

cab_rt_upperJ4]!3] = {{318,-48,8},{302,-33,68}.{206,-33,68},{206,-48,8}}.

cabj-t_ovhd[4][3] = { {275,-33,68}, {250.-33, 74}, {206.-33, 74}, {206.-33.68}},

157

www.manaraa.com

/* conwalk.c *

cabjt support 4 3 { {206.30.-101 [,{206. 41, -16}, {305. 41 .-16}, {305. 30.-101
} }.

cab It lowerj4:[3 >{ {206. 4 1.-16}. {206. 48, 8}, {318. 48.8}, { 305.41,-16} },

cabltupper 4 3 = {{ 206. 48. 8}, {206. 33,68}, {302. 33,68}, {318. 48.8} },

cab_lt_ovhd 4 '3j =
{ {206, 33,68}, {206,33, 74}, {250, 33. 74}.{ 275,33,68} },

cabaft supports 3 '. =
{ {206. -30,-101}, { 206,-41, -16}. {206. 41. -16}, {206, 30,-101} },

cabaft _lower|4i [3; = {{206.-41.- 16}. {206,-48,8}. {206,48,8}, {206,41.-16}},

cabaft upper, 4|[3j = {{ 206,-48. 8}. {206.-33. 68}, {206,33. 68}. {206.48, 8}},

cab_aft_ovhd[4][3]= { {206,-33,68}, {206,-33, 74}, {206, 33, 74}, {206,33, 68}}.

scanner fwdlower!4]3] = { {302. 33, 68}, {322, 33, 95}, {322,-33, 95}, {302, -33. 68}},

scanner_fwd_upper[4][3]= {{322, 33,95}, {322,33,101}, {322,-33, 101}, {322,-33,95}},

scanner _rtj5]|3j= { {302,-33,68}, {322,-33. 95}. {322,-33, 101}, {275,-33. 101}, {275,-33.68}}.

scanner lt[5][3]={{302,33,68},{275,33,68}, {275,33, 101}, {322,33, 101}, {322,33,95}},

scanner_aft[4][3]= {{275, 33, 101}, {275, 33,68}, {275,-33,68}, {275,-33, 101}},

scanner top 4: 3i = {{322. 33, 101}. {275, 33. 101}. {275,-33, 101}, {322,-33. 101}};

The making of the leg is quite complicated. Each leg consists of an

upper link (thigh), lower link (actuator), and a shank (shin). These

segments are first defined in a standardized orientation, and are then

rotated and translated into the proper position. This is done by using

2 objects for each segment. The first object is the correctly rotated

segment, and the second object is the correctly translated first

object. Thus the segment is then in the proper position. To hold the

screen coordinate system fixed the matrix is pushed before each translation

or rotation and then popped after the object is constructed or called. */

for (n=0; n<4; n+ +
) /* Make a set of legs for each viewing quadrant

k /

/
Each quadrant must have unique tags.

{

for(legnum = l ;legnum<7;legnum-<--l-)

{

/* Each segment is constructed and positioned */

build thigh(n,legnum,dl, alpha, thighobj,thighmovetag) ;

build actuator(n,legnum,d2, alpha, actuatorobj,actmovetag)
;

buildsh in (n.legnum, knee,gamma, shinobj,shinmovetag) ;

leg legnum n,=genobj();

makeobj(leg legnumjjn]);

pushmatrix();

/* translate(legx|legnum|,legy!legnum .legz legnum
) ;

*/

translate(hx|legnum ,hylegnum .hz legnum])
;

legmovetag legnum!ni = gentag(); /* The leg is assembled from */

maketag(!egmovetag;legnumj!n]); /* its parts and the entire leg is
*

/* then rotated to the proper angle.
*

rotatejthetailegnum ,'X');

translate(0.0.l4|legnum:.0.0); /* extend leg outward *

158

www.manaraa.com

conv\ alk.c *
/

if (((n > l)&&(legnum < 5))||

((n < 2)&&(legnum > 4))) /* Build the left side first. */

1

if (legnum > 4) * Reverse the back legs. */

{

pushmatri.x));

rotate(1800."Z');

}

color(BLACK):

polfi(5,lt interior);

color(GREEN):

polfi(5,lt side);

polfi(4. front It top);

polfi(4. front It bttm):

polfi(4,bttmJt);

polfi(4,lt spar front);

polfi(4,lt spar bttm);

polfi(4,lt spar It);

polfi(4,lt spar rt);

color(BLUE);

polfi(4,lt spar top):

color(BLACK);

polyi(4,lt spar rt);

color(CYAN)
;

callobjfthighobj'legnum l] nj);

callobj(actuatorobj legnum [l]
[n

i

)

;

callobj(shinobj legnum] jljjnj);

color(GREEN)
;

polfi(4,rt spar front);

polfi(4,rt spar bttm);

polh(4,rt spar It);

polfi(4.rt spar rt);

color(BLUE);

polfi(4,rt spar top);

color(GREEN);

polfi(4, front rt bttm);

polfi(4, front rt top);

polfi(4, front top);

polfi(4,bttm_rt);

polfi(4,back box);

polfi(4.top box);

polfi(5,rt side);

159

www.manaraa.com

* conwalk.c
*

color(BLACK);

polyi(4.top box);

polyi(5.rt side);

polyi(4.rt spar rt);

color(GREEN);

polfi(4,highbox front);

polfi(4,highbox It);

polfi(4,highbox back);

polfi(4,highbox rt);

polfi(4.highbox top);

color(BLACK);

polyi(4.highbox top);

polyi(4.highbox rt);

polyi(4.highbox back):

if (legnum > 4) /* For reversing the back legs. */

{

poprnatrixf) ;

else * Build the right side first. */

{

if (legnum 4) * Reverse the back legs. */

{

pushmatrixj):

rotate(1800.'Z);

color(BLACK);

polfi(5.rt interior),

color(GREEN);

polfi(5,rt side);

polh(4.front_rt_top);

polfi(4, front rt bttm);

polfi(4,bttm_rt);

polfi(4.rt spar bttm);

polfi(4,rt_spar rt);

pcilfi (4 .rt sparlt);

polfi(4.rt spar front);

color(BLUE);

polti(4,rt spar top);

160

www.manaraa.com

conwalk.c *

color(BLACK);

polyi(4.rt spar It);

color(CYAN)
;

callobj(thighobjlegnum][l]inj);

cal]obj(actuatorobj[legnum]j l][nj

callobj(shinobjjlegnum![lJ|n]);

color(GREEN) :

polfi(4,back box);

polfi(4,bttm_lt);

polfi(4. front top);

polfi (4, front _lt_bttm);

polfi(4. front It top);

polfi(4.1t spar bttm):

polfi(4.1t spar rt);

polfi(4.1t spar It);

polfi (4 . It spar front);

color(BLUE);

polfi(4.1t spar top);

color(GREEN);

polfi(4.top box);

polfi

(

5,lt side);

color(BLACK);

polyi(4,top box);

polyi(5,lt_side);

polyi(4.1t spar It);

color(GREEN);

polfi(4.highbox back);

polfi(4.highbox rt);

polfi(4.highbox front);

polfi(4.highbox It);

polfi(4,highbox top);

color(BLACK);

polyi(4,highbox top);

polyi(4,highbox It);

polyi(4,highbox front);

161

www.manaraa.com

* con walk, c

if (legnum > 4)
* For reversing the back legs.

*

{

popmatrix()
;

popmatrix();

closeobj() :

} /* end of leg loop */

} /* end of quadrant loop * '

body = genobj() :

makeobj(body);

color(LTYELLOVV) ;

polfi(4.lbodyarry) ;

polfi(4,backbodyarry)
;

polfi(4.bbodyarry) ;

polfi(4,rbodyarry)
;

color(YELLOW);
polfi(4.tbodyarry);

color(BLACK)
;

polfi(4. black body) :

closeobj()
;

head = genobj() :

makeobj(head) :

color(YELLOW);
polfi(4,cab top);

polfi(4.cab fwd ovhd);

polfi(4,cab rt ovhd);

po!fi(4,cab It ovhd);

polfi(4.cab aft ovhd);

color(BLACK);

polfi(4,cab bottom);

polti(4,cab fwd support);

polti(4.cab rt support);

polh(4,cab It support);

polfi(4.cab aft support);

color) WHITEl);
polti(4,cab fwd lower);

polfi(4,cab rt lower);

polh(4.cab It lower);

polfi(4,cab aft lower):

/* The body is constructed */

/* construct the head */

162

www.manaraa.com

* conwalk.c

color(WHITE) :

polfi(4.cab fwd upper);

polfi(4,cab rt upper):

polfi(4,cab It upper);

polfi(4,cab aft upper);

color(BLACK) ;

polfi(4,cab top):

polyi(4.cab fwd lower);

polyi(4.cab fwd upper);

polyi(4.cab fwd ovhd);

polyi(4.cab rt lower);

polyi(4,cab rt upper);

polyi(4.cab rt ovhd);

polyi(4,cab It lower):

polyi(4,cab It upper);

polyi(4,cab It ovhd);

closeobj()
;

eye=genobj() : /* contruct the radar (eye)*/

makeobj(eye) :

oolor(RED):

polfi(4. scanner fwd upper);

polfi(4. scanner fwd lower);

polfi(5, scanner rt):

polfi(5, scanner It);

polfi(4, scanner aft);

color(BLACK)
;

polfi(4. scanner top);

color(BLUE)
;

closeobj() :

walker jO! = genobj(); /* assemble all the parts for quad I
*/'

makeobj(walkerjOj); /* back and right first */

callobj(legl6:i0);

callobj(legj4jjo
);

caUobj(leg[2][0j);

callobj(body);

callobj(head);

callobj(eye);

callobj(leg[5jj0);

callobj(leg[3 10
);

callobj(legjl'|0);

closeobj()
;

163

www.manaraa.com

* conwalk.c

walker 1 -genobjf

makeobjfwalker 1

callobjfleg 2)[l]j

callobjfleg 4 1
)

callobjfleg 6][lj)

callobj(head):

callobj(eye);

callobj(bod>):

callobjfleg ljjli)

callobj(leg 3][l|)

callobjfleg olfll)

assemble all the parts for quad II

' front and right first
*

walker 2 = genobj(

makeobj(walker;2j

callobjfleg l](2j)

callobj(legi3][2j)

callobjfleg 5]'2 ;

)

callobjfhead);

callobjfeye):

callobjfbodv):

callobjfleg 2| 2
)

callobjfleg 4][2])

callobjfleg 6|'2

assemble all the parts for quad III*

' front and left first
*

walker|3| = genobjf

makeobjfwalker 3

callobjfleg 5][3j)

callobjfleg 3 3

callobjfleg l][3

callobjfbodv):

callobjfhead):

callobjfeye);

callobjfleg 6] 3

cal!obj(legi4][3]

callobj(leg!2]l3]

assemble all the parts for quad IV */

back and left first */

164

www.manaraa.com

/* conwalk.c
*

buildthigh(n,legnum.dl.alpha.thighobj .thighmovetag)

/* this function constructs the thigh (upper link) and rotates, then

translates it into the proper position */

Tag thighmovetag'j[2][4];

int n,legnum.dl[j
;

Angle alpha}]
;

Object thighobj[][2][4j;

{

static int

thighltside[4]}3 :
= {{0.10, 7},{ 102, 10, 7}, {102,10.-7 }.{ 0.10,-7}},

thighrtside[4](3j = { {0,-10,-7}, {102.- 10.-7}, {102.- 10,7}, {0.-10,7}}.

thighfrontJ4j[3] = { {0.-10.7}. {102.-10,7}, {102. 10.7}, {0,10,7}} ,

thighbttmj4][3] = {{0, 10,-7}, { 102,10.-7}, {102,-10.-7}, {0.-10,-7}};

thighobjjlegnumi(0![n] = genobj();

makeobj(thighobj'legnum][0] jn]);

pushmatrixf) :

thighmovetag|legnum 0][n]=gentag(); /* rotate thigh */

maketagf thighmovetag legnum;;0j|n|);

roLatefalphadegnum'.'Y) ;

if(legnum 4) * Build the left side first. */

{

color(CYAN);

polfi(4.thighbttm);

polfi(4,thighltside);

polfi(4,thighrtside);

color(RED);

polfi(4,thighfront);

color(BLACK);

polyi(4,thighrtside);

}

165

www.manaraa.com

convvalk.c
*

else * Build the right side first. */

{

color(CYAN);

polfi(4,thighbttm);

polfi(4.thighrtside);

polfi(4,thighltside);

color(RED);

polfi(4,thighfront);

color(BLACK);

pt>lv i(4.t highlt side)

:

popmatrixlj ;

closeobjf) :

thighobjjlegnum 1 n = genobj() :

makeobj(thighobj legnumj 1 [nj)
;

pushmatrixf) :

t highmovetag legnumj 1 n; = gentag();

maketag(thighmovetag legnum)' ljjnj); /* translate thigh */

translate(0.n,0 0.(float)(-dl[legnumj)) ;

callobj(thighohj legnum, n);

popmatri\() ;

closeobj() ;

166

www.manaraa.com

/* conwalk.c */

/

build act u at or(n,legnum,d2.alpha,actuatorobj,actmovetag)

/* construct the actuator (lower link) */

Tag actmovetag[)j2][4];

int n,legnum,d2j|;

Angle alphaj];

Object actuatorobj[][2][4);

{

static int act ltside|4] [3] = {{0,10, 5}, {83, 10, 5}, {83. 10, -5}. {0,10, -5} }.

actfront[4][3j={{0,-10,5}, {83,-10,5}, {83, 10,5}, {0,10,5}} ,

actrtside[4][3]= { {0.-10.-5 }, {83.-10,-5}, {83. -10, 5}, {0,-10,5}},

actbttm|4]i3! = { {0,10,-5}, {83, 10, -5}, {83, -10, -5}. {0,-10,-5}} ;

actuatorobj legnum] 0][n:=genobj();

rnakeobj(actuatorobj legnum][0jln);

pushmatrixf);

actmovetag legnum]i0][nj = gentag();

maketag(actmovetag;legnum][0][n]); /* rotate actuator *
/

rotate(alpha legnumj,'Y') ;

if(legnum>4) '* Build the left side first. */

{

color(CYAN);

polfi(4.actbttm),

polfi(4.actltside);

polfi(4.actrtside);

color(RED);

polfi(4.actfront):

color(BLACK);

polvi(4.actrtside);

}

167

www.manaraa.com

* conwalk.c *

else /* Build the right side first.
*

{

color(CYAN);

polfi(4,actbttm):

polfi(4,actrtside);

polfi(4.actltside):

color(RED);

polfi(4,actfront);

color(BLACK);

polvi(4,actltside);

}

popmatrix():

closeobjf);

actuatorobjilegnum
|
1 [n =genobj():

makeobjfactuatorobjlegnum |l [n);

pushmatrix():

actmovetag legnum [lj n -gentag();

maket ag(aotmovetagdegnum]ll]lni); /* translate actuator */

translate! (float)(d2 1egnumj), 0.0, (float)(-L3));

callobjfactuatorobj legnum[0|lnl);

popmatri.x();

closeobj!);

}
* end of buildactuator */

168

www.manaraa.com

* conwalk.c */

/ /

buildshin(n,legnum,knee,gamma,shinobj.shinmovetag)

/* construct the shank (shin)
*/

Tag shinmovetagj][2]|4 :

int n,legnum,kneej|
(2i;

Angle gamma]];

Object shinobj[]:2!.l4];

\

static int

shinltside[6][3]={{6, 5,3}, {10,5,-59}, {-7, 5,-50}, {-6, 5, 3}, {-3,5,6}, {3,5,6}},

shankltside[4][3]={{l0,5,-59}, {-23, 5,-102}, {-36, 5,-100}, {-7,5,-50}} ,

shinfront 4][3 ={ {6, 5. 3}, {6,-5. 3}, { 10. -5,-59}, { 10,5.-59} },

shankfront[4][3]= {{l0,-5,-59} 1 {-23,-5,-102}, {-23, 5,-102}, {7,5,-59}},

ankleltside[6][3]={{-23, 5,-102}, {3,5,-153}, {2, 5,-157}, {-3, 5,-158}, {-6, 5,-158}, {-36,5,-100}},

shinrtside !

6]S3i = {{3,-5,6},{-3.-5.6}.{-6,-5.3},-{-7.-5.-50},{l0,-5.-60},{6,-5,3}},

shankrtside[4][3]={{-7,-5,-50}, {-36,-5,-100}, {-23,-5,-102}, {10,-5,-59}}
,

anklertside[6][3]= {{-36,-5,-100}, {-6,-5,-158}, {-3,-5,-158}, {2,-5,-157}. {3,-5,-153}. {-23,-5,-102}},

anklefront[4][3]= {{-23, 5,-102}, {-23,-5,-102}, {3,-5,-153}, {3, 5,-153}},

shinback[4][3]={{-7,-5,-50}, {-6,-5, 3}, {-6,5, 3}, {-7,5,-50}},

shankback[4][3]= {{-36,-5,-100},{-7,-5,-50},{-7, 5,-50}, {-36,5,-100}},

ankleback(4]|3] = { {-6,-5,-158}, {-36,-5,-100}, {-36. 5,-100}. {-6. 5.-158}},

bottom_fwd[4][3]={{3, 5,-153}, {2, 5,-157}, {2,-5,-157}, {3,-5,-153}},

bottom_mid[4][3]={{2,5,-157}, {-3,5,-158}, {-3,-5,-158}, {2,-5,-157}},

bottom aft[4][3]={{-3,5,-158},{-6,5,-158}, {-6,-5,-158}, {-3,-5,-158}};

shinobjjlegnum][Oj[n| = genobj();

makeobj(shinobj|legnum][0]jn]);

pushmatrix() ;

shinmovetag legnum]|0Hn]=gentag();

maketag(shinmovetagjlegnum][0]jnj); /* rotate shank */

rot ate(gamma legnum ,'Y');

if(legnum>4) /* Build the left side first. */

color(BLACK);

polfi(4, bottom fwd);

polfi(4, bottom mid);

polfi (4, bottom aft);

color(CYAN);

polfi(4,ankleback);

polfi(6,ankleltside);

polfi(6,anklertside);

color(RED);

polfi(4,anklefront)
;

169

www.manaraa.com

conwalk.c

color(CYAN);

polfi(4.shankback) ;

polfi(4.shankltside):

polfi(4.shankrtside);

color(RED);

polfi(4.shankfront) ;

color(CYAN);

polfi(4.shinback);

polfi(6.shinltside);

polh(6.shinrtside);

color(RED);

polfi(4.shinfront) ;

color(BLACK);

polyi(6.anklertside);

polyi(4.shankrtside);

poly i(6.shinrt side);

Build the right side first. */

color(BLACK);

polfi(4. bottom fwd)

polfi(4. bottom mid)

polfi(4. bottom aft) ;

color(CYAN);

polfi(4.ankleback);

polfi(6.anklertside);

polfi(6.ankleltside);

color(RED);

polfi(4.anklefront);

color(CYAN);

polfi(4.shankback) ;

polfi(4,shankrtside);

polfi(4.shankltside);

color(RED);

polfi(4.shankfront);

color(CYAN);

polfi(4.shinback);

polfi(6.shinrtside);

polfi(6.shinltside);

170

www.manaraa.com

* conwalk.c

color(RED);

polfi(4,shinfront):

color(BLACK);

polyi(6,ankleltside);

poly i(4,sh an kit side);

polyi(6,shinltside);

}

color(BLACK);

pushmatrix();

rotate(-900,'X');

translatefO. 0,0. 0,5.0):

circf(0. 0,0. 0,7.0) ;

circf(0. 0.32. 0.5.0) ;

popmatrix();

pushmatrix();

rotate(900.'X');

lranslate(0. 0,0. 0,5.0);

circf(0.0.0.0.7.0) :

circf(0.0.-32. 0.5.0) ;

popmatrixf);

popmatrix();

closeobj();

shinobj legnum)[l][nj=genobj();

makeobj(shinobj[legnum|[lj(nj);

pushmatrix();

shinmovetag[legnuml; lj[n]=gentag();

maketag(shinmovetagjlegnumj(l][n]); /* translate shank */

translate
(
(float)knee|legnumj ' 0],0.0,(float)knee legnum][l))

;

callobj (shinobj legnum)[0][nj);

popmatrix();

closeobj();

} /* end of buildshin */

171

www.manaraa.com

This is a function for the iris240() program walk.c.

tool box.

c

Relle Lvrnan 25 Aug 1986

/

include "gl.h"

^include "device.h"

^include "walk.h"

^include • stdio.h •

^include <rnath.h >

transform point (p2.m, pi. i)

/* This function changes the coordinate system for a point vector

using a homogeneous transformation submatrix. p2 = m * pi */

ml i; /* Leg number *

float m 4ji4j; /* Homogeneous transformation submatrix */

vector pi 7 .
* Vector represented in first coordinate system */

p2[7l; /* Vector represented in transformed coordinate system */

{

P 2 ii.x = m[0][0j*pl[i].x + m[0][l]*pl[i].y + m[0][2j*pl[ij.z + m[0][3l;

P 2 ij.y = m[l][0J*pl[i].x - m 1
j

1 i *pl[i .y + m[l][2]*pl[i|.z + m[l][S];

p2 ii.z = m 2][0]*pl[i].x + m|2|[l]*plli].y + m[2][2]*pl[i].z + m[2)[3|;

} /

* end of transform point

y****»******x*************»*T***x**********t>:***************>:*******X********/
/

float modulus one(temp)

/* This function performs the modulus one operation on numbers of type float. *

j

float temp;

{

while (temp >= 1.0)

{

temp -= 1.0;

\

while (temp < 0.0)

{

temp += 1.0;

\

return temp:

}
* end of modulus one */

172

www.manaraa.com

I* Makefile *,

This is Makefile. It is used in the utility make to speed

compilation of walk. c. To use it, just type "make".

CFLAGS = -Zf-Zg -g

SRCS = walk.c

conwalk.c

support.

c

toolbox.

c

steering.

c

body rates.

c

ft traj.c

opt period.

c

leg phase.

c

con work vole

driver.

c

status.

c

decelerate.

c

init.c

OBJS = walk.o

conwalk.o

support.

o

toolbox.

o

steering.

o

body rates.

o

ft traj.o

opt period.

o

leg phase.

o

con work vol.o

driver.

o

status.

o

decelerate.

o

init.o

walk : (OBJS)

cc -o walk (OBJS) -Zg -Zf

(OBJS) : walk.h

173

www.manaraa.com

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center

Cameron Station

Alexandria. Virginia 22304-6145

Library (Code 0142)

Naval Postgraduate School

Monterey. California 93943-5002

Chairman (Code 62)

Department of Electronics and Computer Engineering

Naval Postgraduate School

Monterev, California 93943

4. Curricular Officer (Code 32) 1

Department of Electronics and Computer Engineering

Naval Postgraduate School

Monterey, California 93943

5. Prof. Robert B. McGhee (Code 52Mz) 20

Department of Computer Science

Naval Postgraduate School

Monterey. California 93943

6. Prof. Roberto Cristi (Code 62Cx) 1

Department of Electronics and Computer Engineering

Naval Postgraduate School

Monterey, California 93943

7. Lt. Relle L. Lyman, Jr. 2

Naval Sea Systems Command SEA 90G
Washington. D.C. 20362-5101

8. Prof. Kenneth J. Waldron 1

Department of Mechanical Engineering

206 W. 18th Avenue

Ohio State University

Columbus, Ohio 43210

174

www.manaraa.com

9. Russel L. Werneth (Code 69Wh)
Department of Mechanical Engineering

Naval Postgraduate School

Monterey. California 93943

10. William J. Butler

Naval Sea Systems Command SEA 90G
Washington. D.C. 20362-5101

11. Cdr. Bart Everett

Naval Ocean System Center (Code 442)

San Diego. California 92152

12. Research Administration (Code 012)

Naval Postgraduate School

Monterey. California 93943

13. Center for Naval Analyses
2000 N. Beauregard St.

Alexandria, VA 22311

175

www.manaraa.com

www.manaraa.com

www.manaraa.com
1»'; •-. aI**

www.manaraa.com

www.manaraa.com

www.manaraa.com

OHOOL
A 93943-6003

Lyman
A computer simulation

study of tripod follow-
the-leader gait coordina-
tion for a hexapod walk-
ing machine.

?0 AUG 9? 3 7U 1 5

Thesis

L9535

C.l

Lyman

A computet: simulation

study of tripod follow-

the-leader gait coordina-

tion for a hexapod walk-

ing machine.

www.manaraa.com

